1,375 research outputs found

    Application of Deep Learning Long Short-Term Memory in Energy Demand Forecasting

    Full text link
    The smart metering infrastructure has changed how electricity is measured in both residential and industrial application. The large amount of data collected by smart meter per day provides a huge potential for analytics to support the operation of a smart grid, an example of which is energy demand forecasting. Short term energy forecasting can be used by utilities to assess if any forecasted peak energy demand would have an adverse effect on the power system transmission and distribution infrastructure. It can also help in load scheduling and demand side management. Many techniques have been proposed to forecast time series including Support Vector Machine, Artificial Neural Network and Deep Learning. In this work we use Long Short Term Memory architecture to forecast 3-day ahead energy demand across each month in the year. The results show that 3-day ahead demand can be accurately forecasted with a Mean Absolute Percentage Error of 3.15%. In addition to that, the paper proposes way to quantify the time as a feature to be used in the training phase which is shown to affect the network performance

    Spin Fluctuation-Induced Superconductivity in Organic Compounds

    Full text link
    Spin fluctuation-induced superconductivity in two-dimensional organic compounds such as \kappa-(ET)_2-X is investigated by using a simplified dimer Hubbard model with right-angled isosceles triangular lattice (transfer matrices -\tau, -\tau^\prime). The dynamical susceptiblity and the self-energy are calculated self-consistently within the fluctuation exchange approximation and the value for T_c as obtained by solving the linearized Eliashberg-type equations is in good agreement with experiment. The pairing symmetry is of d_{x^2-y^2} type. The calculated (U/\tau)-dependence of T_c compares qualitatively well with the observed pressure dependence of T_c. Varying the value for \tau^\prime/\tau from 0 to 1 we interpolate between the square lattice and the regular triangular lattice and find firstly that values of T_c for \kappa-(ET)_2-X and cuprates scale well and secondly that T_c tends to decrease with increasing \tau^\prime/\tau and no superconductivity is found for \tau^\prime/\tau=1, the regular triangular lattice.Comment: 4 pages, 6 eps figures, uses jpsj.st

    Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures

    Full text link
    This study investigates the strong photoluminescence (PL) and X-ray excited optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes (GNFs:N), which arise from the significantly enhanced density of states in the region of {\pi} states and the gap between {\pi} and {\pi}* states. The increase in the number of the sp2 clusters in the form of pyridine-like N-C, graphite-N-like, and the C=O bonding and the resonant energy transfer from the N and O atoms to the sp2 clusters were found to be responsible for the blue shift and the enhancement of the main PL emission feature. The enhanced PL is strongly related to the induced changes of the electronic structures and bonding properties, which were revealed by the X-ray absorption near-edge structure, X-ray emission spectroscopy, and resonance inelastic X-ray scattering. The study demonstrates that PL emission can be tailored through appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way for new optoelectronic devices.Comment: 8 pages, 6 figures (including toc figure

    Stability of condensate in superconductors

    Full text link
    According to the BCS theory the superconducting condensate develops in a single quantum mode and no Cooper pairs out of the condensate are assumed. Here we discuss a mechanism by which the successful mode inhibits condensation in neighboring modes and suppresses a creation of noncondensed Cooper pairs. It is shown that condensed and noncondensed Cooper pairs are separated by an energy gap which is smaller than the superconducting gap but large enough to prevent nucleation in all other modes and to eliminate effects of noncondensed Cooper pairs on properties of superconductors. Our result thus justifies basic assumptions of the BCS theory and confirms that the BCS condensate is stable with respect to two-particle excitations

    Mutations within the tyrosine kinase domain of EGFR gene specifically occur in lung adenocarcinoma patients with a low exposure of tobacco smoking

    Get PDF
    Somatically acquired mutations in the epidermal growth factor receptor (EGFR) gene in lung cancer are associated with significant clinical responses to gefitinib, a tyrosine kinase inhibitor that targets EGFR. We screened the EGFR in 469 resected tumours of patients with lung cancer, which included 322 adenocarcinomas, 102 squamous cell carcinomas, 27 large cell carcinomas, 13 small cell carcinomas, and five other cell types. PCR with a specific condition was performed to identify any deletion in exon 19, while mutant-allele-specific amplification was performed to identify a mutation in codon 858 of exon 21. EGFR mutations were found in 136 cases (42.2%) with adenocarcinoma, in one case with large cell carcinoma, and in one case with pleomorphic carcinoma. An in-frame deletion in exon 19 was found in 62 cases while an L858R mutation was found in 77 cases. In the 322 cases with adenocarcinoma, these mutations were more frequently found in women than in men (P=0.0004), in well differentiated tumours than in poorly differentiated tumours (P=0.0014), and in patients who were never smokers than in patients who were current/former smokers (P<0.0001). The mutation was more frequently observed in patients who smoked ⩽20 pack-year, and in patients who quit at least 20 years before the date of diagnosis for lung cancer. The K-ras mutations were more frequently found in smokers than in never smokers, and in high-dose smokers than in low-dose smokers. In conclusion, the mutations within the tyrosine kinase domain of EGFR were found to specifically occur in lung adenocarcinoma patients with a low exposure of tobacco smoking

    Electrodynamics of Media

    Get PDF
    Contains reports on six research projects.Joint Services Electronics Program (Contract DAABO7-71-C-0300)U. S. Army Research Office - Durham (Contract DAHC04-72-C-0044)National Science Foundation (Grant GK-31012X), Cornell Universit

    Homogeneous Fermion Superfluid with Unequal Spin Populations

    Full text link
    For decades, the conventional view is that an s-wave BCS superfluid can not support uniform spin polarization due to a gap Δ\Delta in the quasiparticle excitation spectrum. We show that this is an artifact of the dismissal of quasiparticle interactions VqpV_{qp}^{} in the conventional approach at the outset. Such interactions can cause triplet fluctuations in the ground state and hence non-zero spin polarization at "magnetic field" h<Δh<\Delta. The resulting ground state is a pairing state of quasiparticles on the ``BCS vacuum". For sufficiently large VqpV_{qp}, the spin polarization of at unitarity has the simple form mμ1/2m\propto \mu^{1/2}. Our study is motivated by the recent experiments at Rice which found evidence of a homogenous superfluid state with uniform spin polarization.Comment: 4 pages, 3 figure

    s-wave superconductivity from antiferromagnetic spin-fluctuation model for bilayer materials

    Full text link
    It is usually believed that the spin-fluctuation mechanism for high-temperature superconductivity results in d-wave pairing, and that it is destructive for the conventional phonon-mediated pairing. We show that in bilayer materials, due to nearly perfect antiferromagnetic spin correlations between the planes, the stronger instability is with respect to a superconducting state whose order parameters in the even and odd plane-bands have opposite signs, while having both two-dimensional ss-symmetry. The interaction of electrons with Raman- (infrared-) active phonons enhances (suppresses) the instability.Comment: Revtex, 3 figure

    A model for collisions in granular gases

    Full text link
    We propose a model for collisions between particles of a granular material and calculate the restitution coefficients for the normal and tangential motion as functions of the impact velocity from considerations of dissipative viscoelastic collisions. Existing models of impact with dissipation as well as the classical Hertz impact theory are included in the present model as special cases. We find that the type of collision (smooth, reflecting or sticky) is determined by the impact velocity and by the surface properties of the colliding grains. We observe a rather nontrivial dependence of the tangential restitution coefficient on the impact velocity.Comment: 11 pages, 2 figure

    Mutational Analysis of EGFR and Related Signaling Pathway Genes in Lung Adenocarcinomas Identifies a Novel Somatic Kinase Domain Mutation in FGFR4

    Get PDF
    BACKGROUND: Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC) specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16) of FGFR4 (Glu681Lys), identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr) in a lung adenocarcinoma cell line. CONCLUSIONS/SIGNIFICANCE: This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas
    corecore