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Joint Services Electronics Program (Contract DAABO7-71 -C -0300)

U. S. Army Research Office - Durham (Contract DAHC04-72-C-0044)

H. A. Haus, W. P. Allis

In a previous report, we developed a theory for the electron distribution in a

diatomic gas laser and its interaction with the population distribution of the lasing spe-

cies. Such an analysis is necessary to obtain analytic expressions for the power

output and efficiency of a laser. In the present report we extend the analysis to describe

a model for the CO 2 laser.

For mathematical simplicity, we adopt a model in which the molecular gas is repre-

sented by two temperatures. For this purpose, we consider the nitrogen vibrational

levels to be tightly coupled to the asymmetric stretching mode of CO and treat the two

vibrational systems as one. Similarly, we assume that the symmetric stretching mode

of CO2 is tightly coupled to the bending mode and that both of these can be described

by a single vibrational temperature. Furthermore, we assume that the nitrogen vibra-

tional mode and the asymmetric stretching mode of CO 2 are excited via an inter-

mediate ionic state so that excitation occurs when the electrons have reached a critical

energy u (~2 e\k); in excitation they are assumed to lose a fraction, Au, of this energy.

We assume that the excitation of the combined system of symmetric stretching and

bending modes is effected by low-energy electrons that lose an energy Vb upon

excitation. Under these simplifying assumptions, closed-form expressions can

be derived for all physical quantities of interest.

1. Electron Distribution

The distribution function of the electrons f(u) in energy space is obtained anal-

ogously to the derivation in our previous report.I We supplement the current in
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(IV. ELECTRODYNAMICS OF MEDIA)

energy space, the G-function, with the contribution of the combined bending symmetric

stretching mode excitation characterized by an excitation frequency v b . The differential

equation for the distribution function f(u), in which we have disregarded elastic losses,

becomes (ub - ub - b )

2 e E 3/2 df
2 7e E v u d3 m Vm du = v + Auv 6(u-u )"x a a b

= vx + Au a6(u-u a ) + Vb;

u b < u < u

ub < u < u b'

Here E is the applied electric

lisions, v is the frequency of

trons reach energy u , a is

field, v m is the frequency of momentum-changing col-

electronic excitations assumed to occur when the elec-

the excitation frequency of the intermediate ionic state

THIS IS APPROXIMATED BY A DELTA
FUNCTION

u= 0 1i IIU U_ Ua U Lu U
u=up ua ua + u

Fig. IV-1. Current in energy space (G-function).
u b  0. 05 oV

u 2 eV
a

Au 0. 2 eV
u 10 eV.

x

which then leads to an excitation of the combined asymmetric stretching mode and nitro-

gen vibrational levels, and v b is the frequency of excitation of the combined bending

and symmetric stretching modes which occurs when the electrons reach energy ub. We

use subscript a for the process which is analogous to that denoted by subscript e in

our previous report. Figure IV-1 illustrates the G-function. We introduce a definition

for drift energy ud given by

d 2 m V
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(IV. ELECTRODYNAMICS OF MEDIA)

Equation 1 permits a closed-form solution for the distribution function

x 3 1 1
f(u) 2 ud u <u < u

vm 2ud\ a x

f(u) x 3 1 1 a Au
f (u) + -; u < u um 2u x 3/ 2 b a

x 3 1 1 a Au b 3 1 1 -
f (u) + + u <ub< u .

,x 
d 

Zu d  \/ u 3-- 
Ub

x 2u
u x t 

bj

(3)

If we introduce the normalization condition

f -u f(u) du = 1, (4)

we obtain a relationship among the different excitation frequencies

xux + Vau + bVb = Vm2ud. (5)

Equation 5 is a form of the energy conservation law. On the left-hand side is the rate

of energy loss by the electrons, per electron, and on the right-hand side is the rate

of energy supply by the electric field to the electrons, per electron. Equation 5 is one

equation for the three unknowns, v x, v a, Vb for a given electric field E. In order to

find more relationships the molecular excitation has to be studied in greater detail.

2. Molecular Excitation

We assume that the distribution of CO 2 over the asymmetric stretching mode (and

the nitrogen vibrational distribution), the symmetric stretching mode, and the bending

mode are all described in terms of vibrational temperatures. We introduce convenient

energy parameters,

a = exp(-hw,/kTa) b exp(-hw b/kTb) s exp(-hws /kTb). (6)

Note that the energy parameter for the symmetric stretching mode s is equal to the

square of that of the bending mode, s = b 2 , because the assumption is made that the

spacing of the energy -levels of the symmetric stretching mode is twice that of the

bending mode, and that the temperatures of the two modes are the same. It is help-

ful to introduce additional energy parameters by definition:
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(IV. ELECTRODYNAMICS OF MEDIA)

a -b 0 s. (7)
+ a I +p 1 +c

The energy U in a particular mode, when it is nondegenerate, is given directly in terms

of Greek letters; for example, U = h& a. The energy conservation relation for the

asymmetric stretching mode can be written conveniently in the form

n NCid N  + -R where a (8)
e a MNdt Ta exp(h-/kT ) -1

ag

Here T is a phenomenological relaxation time for the asymmetric stretching mode,

R is the rate at which vibrational quanta are lost from the system via radiative tran-

sitions, n is the electron density, and N is the particle density. CN is the mole
e MN

fraction of nitrogen and CO2 because a describes the combined energy of the asym-

metric stretching mode and the nitrogen vibrational mode. In order to write an energy

conservation relation for the symmetric stretching mode and the bending mode it is

necessary to take note of the degeneracy of the bending mode. The m level of

the bending mode has degeneracy m+1. Under these conditions the energy in the bending

mode is 2phcb. By using this fact, the energy conservation relation for the combined

symmetric stretching and bending modes becomes

a-a 2(P-Pdg
n = NC (-+2p) + -- + - + R (9)

e b I dt b

Here we have introduced the two phenomenological relaxation times Ts and Tb for the

stretching and bending modes, respectively. CM is the mole fraction of CO 2 . The arrival

of quanta via radiative transitions is contained in R. Since 0- is related to p by

()2
S( ) (10)

Eqs. 8 and 9 provide two relations for the tvw.o unknowns a and p in terms of va and

v . Now the excitation frequencies themselves depend on the molecular excitation.

One of these dependencies can be taken directly from our previous report. In the

present report we have changed the subscript e to a. Also, we have defined a new

parameter , proportional to the collision cross section that incorporates some of

the parameters that we have defined. Finally,

a a 
) -

The excitation rate of the combined asymmetric stretching mode and the nitrogen

vibrational mode is
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u

uN Lu2u u'

da

(11)

which is obtained from an assumed dipolar collision model for the molecules treated

as harmonic oscillators.

Now, consider the excitation of the bending mode, and in particular, the
th th

de-excitation of the (m+1) level to the m level by an electron collision, as a result
th

of which the m level's population is increased.

Assuming that the electron collision cross section is Q(v), we have for the rate

of excitation of the fractional population xm per degenerate mode, m/ g m (where gm
is the degeneracy), by entry of particles from the level m+1,

(m+l) xn m+ vnQ (v) f(v) dv.
gn+1 e 1

(12)

The factor (m+l) arises because we assume interaction of the electron with the mole-

cule via an induced dipole of the molecule. Perturbation analysis shows that the cross

section for the m+1 - m transition is proportional to m+1. Furthermore, the rate

is proportional to the fractional population per degenerate energy level of the (m+l)th

level. The term vQ 1 0 (v) ne is the collision frequency for a 1 - 0 transition. This

expression can be conveniently written in terms of the distribution function f(u)

n e(m+l) ml f(u) R 1 0 (u) du,
e m+1 1

(13)

where 111 0 (u) is vQ 10 (v) as a function of u.

In this format it is easy to take account of the

states that the rate of up-transitions from the mth level

to the rate of down transitions, in that the f(u) of (13)

where ub is the energy loss in a collision. Taking these

Klein-Rossland relation which

to the (m+l) t h level is related

has to be replaced by f(u+ub),

relations into account, we have

d n (m+) Xm+l \u f(u) R (u) du
dt gm ne gm+1 0 10

electrons

0 U m

+ m -1 %-u f(U+Vb) RI0(u) du .
m-1 010
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If we assume that the V-V coupling is so strong that thermal equilibrium is estab-

lished in the bending mode, we may set

xm = (m+l)(1-b)2 b (15)

and obtain the rate of energy transfer from the electrons to the vibrational mode by

multiplying both sides of (14) by ub and g and adding over all m. The result may

be identified with the rate of energy supply per molecule, by multiplying with

Au ne 1b/NCM. After carrying out the summation, we have

n v b au ( I n - c -

Au NC Au n' u f u+1 ) it 10 (u) du - b 'u f(u) R110(u) du
M 0) 0

(16)

As a simplifying assumption we take Rl1 0 (u) as a unit impulse (delta) function at

the energy u = ub

10 (u) = R6(u-ub).

Now we may introduce the expressions for f(u) and obtain for the integrals

\Nu fu+ V ) R 10(u)
h 0

3 F ub
du = R

d m bh

f(u) 1 10 (u) du = 3
2u - uu x

v Au bb b+
m 3 mu

ubub

Introducing these expressions into (16), we obtain

'b

m

NC VI 3
v 2u d

v

+ A

m

I+b) _x
1b tif

mn

l
b(l-b) Au b

2u3/2 rmu

u

(17)ub
V// Ub

We may define a dimensionless parameter r which is a measure of the collision cross

section for excitation of the bending mode (the precise meaning of r1 will soon become

apparent).
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6NC
U- R.

x m

In terms of this parameter, we have

1/2

l +b)

1 + b( I+b) U (

The remaining equations for rates v x' a , and v b are (5) and (11).

v , m, we find

Au2u

Ud

Au x
1+ a ,2u, U

+ q b +-
x

2
ud

Solving for

ub
u b

Vb (1 _ + Au
2ud

u (-b)
a

u
x

AU x
1 + a 2u d u'

d

u _ b - (1-b)
Ub

Equations (5) and (11) may then serve to find vb / and v a /

It is of interest to study the behavior of the rates when the molecular system is in the

ground state. lFurthermore, consider the limits of low and high E-field ud - 0, and ud - 00

In the limit ud - 0,

vb

m

a

ud -0

ud-0

(21)

(22)( 2 ud/ux)

b Au u b

u
x 2u 3 2

a
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m

(l-b)
u

2 ud

Ub

Ub

(19)

x

V
m

2 ud
UXL

(20)

7d

V,

b - (l-b) u
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I, (2ud/ux)2x (23)

mud- 0 Vb Au b
ux 3/2

2u/

In the limit ud - ,

-b _ ( 1 (24)

because u b << ux ,

a
S= (. (25)

S 2 ud 
(26)

' U
m x

The excitation of the "bending mode" requiring energy ub starts as E- at low fields

and saturates at v m(Ub/ub) ' at high fields. The excitation of the asymmetric stretching
E4

mode and nitrogen behaves as E at low fields and saturates at av . The electronic
6 2 m

excitations start out as E and increase as E at high fields.
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B. INVERSION GROWTH RATEI IN AN IP' LASER AMPLIFIER

Joint Services Electronics Programni (Contract DAABO7 -71 -C -0300)

J. R. Gersh

Mleasurements of the population inversion density for the v = 1 to v = 2 transition

in an IIF chemical laser amplifier at the time of peak gain have been made. Two dif-

ferent techniques are used, with fairly good agreement. From these measurements,

we infer the rate at which the chemical reaction
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F + H 2 - HF + H

creates the population inversion.

The experimental apparatus comprises an HF laser oscillator and amplifier

employing identical discharge tubes, each with 60 pairs of 510 0 resistors, whose

leads act as pin electrodes. The pins are spaced 1 cm apart along the tube, with a

2. 5 cm gap between opposite pins. The oscillator cavity is 1. 5 m long, and is formed

by a flat gold mirror and a dielectric -coated Germanium output mirror, with 5 m radius

of curvature and 50% transmission. The two tubes are served by the same gas-handling

system, which provides a flowing mixture of 193 Torr He, 6 Torr SF 6 and 1 Torr H 2.

Fig. IV-2. Oscillator output pulse. Horizontal scale: 0. 2 Is/div.
Vertical scale: 0. 2 V/div.

The timing of the oscillator output pulse may be varied, so that it may enter the

amplifier at any time after the amplifier discharge. The optical signal is detected by

a Ge:Au photoconductor cooled by LN 2 , and is observed on a Tektronix 556 oscil-

loscope.

Fig. IV-3. Amplifier superradiant pulse. Oscilloscope sweep triggered
by amplifier discharge current. Horizontal scale: 0. 2 ps/div.
Vertical scale: 10 mV/div.
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(IV. ELECTRODYNAMICS OF MEDIA)

Figure IV-2 shows a typical oscillator pulse with the amplifier turned off. The

characteristic triple-peak shape represents three consecutive vibrational transitions: v=

2 - 1, v = 3 - 2, and v = 1 - 0. The amplifier is superradiant. Figure IV-3 shows

the amplifier superradiant pulse, which is also triple-peaked. Here the oscilloscope

sweep is triggered by the amplifier discharge current. If the length of the amplifier

is reduced to 30 pins, only the leading, 2 - 1 transition is superradiant. In this case

the total superradiant power emitted is measured as 1. 3 W, from which the inversion

density may be calculated.

The active medium is modeled as a uniform rod of length f and cross-sectional

area A, with a particle density in the v = 2 level of N 2 . The power emitted by sponta-

neous emission from a slice of length dz is then

dP = hv NA d z ,  (2)
t 2
sp

where t is the spontaneous emission lifetime. If we consider only that fraction emitted
sp

through the solid angle subtended by the end of the rod, and let c be the small-signal

gain, the total power emitted is

( hv A az
P N 2  e2 e dz. (3)

O0 sp 4 rz

For high-gain media such as HF this power will originate primarily in that section

farthest from the output end:

hv A 1 at
P N e (4)

t 2 42 a

Sinc e

X (N)-N 1) g(v)
a = (5)

8rrt
sp

where g(v) is the line-shape function, we get

3N 2 e 6)
c 2_ 1 _ g(v)

or

8Ttsp c 2 2  1

2 -N 1  2 3 2 N (
X g(v) 2hv A 1
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The quantity N - N 1 appears on both sides of Eq. 7, but on the right-hand side only

in the slowly varying logarithmic factor, and only as a ratio of inversion to upper-state

population. Hence a reasonable estimate of this ratio will yield a good value for the

inversion itself. Chemiluminescence studies 1 indicate that the ratio of the reaction rate

producing HF with v = 2 to that producing v = 1 is 3. 26, thereby giving N 2 - N 1 /N 2

2/3, with relaxation effects ignored. At line center g(v) is equal to the inverse line-

width of the transition, which is taken2 to be 1 GHz as an order-of-magnitude estimate.
3

For the HF 2 - 1 transition observed here, X = 2. 7 ,j and t = 6. 5 ms. The diam-
sp 4

eter of the active region around each pin has been measured as 0. 25 in., which gives
2 15 -3

A = 1.6 cm and f = 19 cm. These values give N -N 1 = 1.3 X 10 cm . The super-

radiant pulse is observed at the time of peak gain in the amplifier, 560 ns after the

start of the discharge current. In a chemical laser with an excess of one reactant,

it may be assumed that the pumping rate into the ith level goes as Rete /T, for an ini-

tial rate R i, which indicates that the reaction slows down as the reactants are con-

sumed. If we assume that the peak gain occurs when the reaction is essentially complete

so that relaxation effects can take over, and take this time to be the l/e point, we
21 -3 -1

get R 2 - R 1 = 3. 7 X10 cm s .

Another method of calculating the inversion places reliance on direct measure-

ments of the gain of the amplifier. Figure IV-4 shows the output of the amplifier

Fig. IV-4. Amplifier output. The input is a pulse similar to that in Fig. IV-2.

Oscilloscope sweep triggered by amplifier discharge current.

Horizontal scale: 0. 2 jis/div. Vertical scale: 1 V/div.

at the time of peak gain, also with the sweep triggered by the amplifier discharge cur-

rent. The amplitude may be compared with that shown in Fig. IV-2 to measure the

gain. (The oscillator output is relatively stable in amplitude from pulse to pulse.) To

determine the transient saturation effects, it is useful to note that the leading peak,

whose gain we wish to relate to the inversion, is a very sharp spike, 40 ns wide. If

QPR No. 109
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we assume that this time is short compared with that in which the pump can make a sig-

nificant change in the populations, we can model the intensity of this radiation as an

impulse. That is, we let I(t) be the limit as At - 0 of a rectangular pulse of height

E/At and width At. E is then the area of this pulse, and represents the total energy,
2

in J/cm , passing through the amplifier. In this model the rate equations for the v= 2

and v = 1 populations are

dN?

dt = R 2 (t) - (N 2 -N 1) W E 6(t-t 1)
(8)

dN

dt - R (t) + (N 2 -N 1 ) W E 6(t-tl).

Combining them, letting N = N 2 - N 1 and R = R 2 - 1 , we obtain

dNdt = R(t) - 2NWE 6(t-t).(9)

Here R 1 and R2 are the rates at which the chemical reaction pumps these levels, t1 is

X Zg(v)
the time after the amplifier discharge of the 2 - 1 pulse, and W = 8rhvt Relaxation

4 sp
is neglected; the primary method, IF-Hl vibrational transfer, has a lifetime at 1 Torr

HE' pressure of 11 [s that is long compared with any period of present interest. 5

We let tl be the time just before the pulse and tbe the time just after it, and

we wish to find N(t) in terms of N (t. To do this, we must investigate Eq. 9 in

detail. In the case of a finite rectangular pulse centered at t1 , with the pump con-

sidered to have negligible influence for small At, we have

dN 2NWE At atAt for t < t < + t (10)
dt At 1  2'

and so

N(t) = N(t) e2WE (11)

To find the total energy extracted from the active medium by the laser pulse, we must

integrate this change in population along the tube.

In a slice of thickness dz the energy extracted per unit area of the beam is

dE = dz (12)

and so

QPR No. 109



(IV. hLECTRODYNNAMICS OF MEDIA)

E hvN(te)(-e - ZWE) (13)

dE (13)
dz

Integrating (13) along the tube gives

S(1 
-exp( -2WVE out)

-9_ 
1 

out

N(t) -E. + In (14)
1 - exp(-2WE in

The beam diameter was measured as approximately 5 mm by closing an aperture until

it was attenuated. The data of Figs. IV-2 and IV-4 yield E. = 1.4 X 10 - 4 J/cm2 and
in

-3 14 -3
E out= 1. 1 X 10 3 J/cm, resulting in N2 =7. 3 X 10 14m and R 2. 1 X

out 1 1I
21 -3 -1

10 cm s

The two methods agree within a factor of 2, which is not unreasonable, if we con-

sider that some parameters were estimated. Based on the 3. 26 pumping ratio men-

tioned above, and chemical studies of the total reaction rate, H2 - R1 = 7. 2 X
21 -3 -1

10 cm s , under the assumptions of an initial concentration of 1 Torr H, and

an order- of-magnitude estimate of 1 Torr F.
15 -3

The inversion densities indicate that a total HF concentration of only Z10 cm
16 -3

is produced. If all H, is consumed, we would expect =2 Torr, or ;7 X 10 cm to

be produced. The following experiment, which was suggested by E. L. Frohring and

conducted with him, indicates that only a fraction of the available IT, is consumed.

The oscillator tube containing the same partial pressures of the gases as were pres-

ent in the flowing mixture was sealed off. The oscillator was then pulsed repeatedly,

using 36 pins at 2-s intervals. For 500 pulses the output intensity was observed to
3

decrease approximately 0. 1% per pulse. The volume of the tube is 1600 cm , that
3

of the total active region around the pins is 29 cm . If all H z in this region were con-

sumed at each pulse, the expected rate of intensity decrease would then be 1. 8% per
15 -3

pulse. The lower rate indicates that only 1/9 Torr, or 4.0 X 10 cm is pro-

duced.

Further work will involve developing an applicable theory of transient saturation

effects for a transition terminating in the ground state. The influence of the leading

2 - 1 peak of the oscillator pulse on the amplifier v = 1 population may then be related

to the gain seen by the subsequent 1 - 0 peak. If this influence is traced through time,

a direct measurement of the ratio of pumping rates into the v = 2 and v = 1 levels may

be made.
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C. THE kDB SYSTEM AND THE OPTICS OF BIANISOTROPIC MEDIA

Joint Services Electronics Program (Contract I)AAB07 -71 -C -0300)

J. A. Kong

It has long been recognized in the study of electrically anisotropic media such as

uniaxial and biaxial crystals that a set of coordinates including propagation vector k,

electric vector D, and magnetic vector B provides the most expedient scheme for

dealing with them. When the medium is bianisotropic this system is indispensable. We

have extended previous work1 - 2 on anisotropic media to formulate the kDB system in

a way that is useful for studying general anisotropic and bianisotropic media. In this

report we first illustrate the use of the kDB system and then apply it to a biaxial

crystal and a bianisotropic medium.

We write the constitutive relations for a bianisotropic medium first in DB repre-

sentation.3

v vw X vw (la)

H = D +v B , (Ilb)V W W V w

where v, w denote x, y, z components and repeated indices imply summation. The

three-dimensional constitutive matrices are then transformed to the kDB system.

K.. t. t. K K t. t. K. i (2a)
1] Iv ]w v\V v\ IV Ji 1]ii

Xij t. t jwx w t. t itwxij (2b)
I] i\ jx vw vw ix jw ij

ij =  ivt-\,-; =V tivt j10 ij (2c)

,.. = t. t. v ; v = t. t. v.. (2d)13 Iv Iw VV vw Iv jVw 1

where i, = 1, 2, 3 denote components in the kDB system. The t. are elements
4iv

of the transformation matrix.
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tlx tly

T 2x t2y

3x t3y

sin 6

cos 6 cos o

sin e cos 6

tlz

t 2 z

t3z

-cos 6

cos 6 sin 6

sin 6 sin

A A A A
The kDB system is defined by unit vectors e l , e 2 , and e 3 . The unit vector e 3 points

A A -
in the direction of k. The unit vector e 2 lies in the plane determined by z and k, and

is perpendicular to e 3 . The unit vector e l is perpendicular to the plane determined

by z and k, and is therefore perpendicular to both e 3 and e 2. WXe can generate the

kDB coordinate axes from the original coordinate axes by two successive rotations

(Fig. IV -5).

\K

eFig. I-5. Establishing the k system.

Fig. IV-5. Establishing the kDB system.

From Maxwell's

system.

equations, we obtain the equation for electric vector D in the kDB

12 -X12

12 X11

D2 = [(u+N 1 2 )(u- 2 1 )+ 11 22] [(u

S21

-V11

U+(u 21

-X12)(u+X21)+ X11X22 ] - 11

X22 -K21
u+X21 K 11

27
u-y 21

u-y21

-K 22 ] 1
K 12 D2_

where u = w/k. Note also that in the kDB system D 3 = 0. Equation 5 is useful
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for determining the normal modes in the medium and for obtaining the dispersion rela-

tions.

As a first example, consider a biaxial medium.

system, we have

-I
K=

V = VI

X = = 0.

YK
z

Written in the principal coordinate

(6a)

(6b)

(6c)

To relate to the permittivities, we note that K = 1/ x ,

impermeability v is the reciprocal of p. By using Eq

can be transferred to the kDB system, and we obtain

K = 1/Ec, and K = 1/c . The

3, the constitutive matrices

K sin 0 + K COS2 0

K S-K ) Cos 0 sino cos

(K X-K ) Sin 0 in 0 COS 0

V = VI

(K -K ) COS 0 sin 6 c()S

(Kcos o+in Kii ) So 0O + K in 0

K COS + K s1 O-K sin 0 cos 0(nln- -~~ir U-

(K -K ) sin 0 sin o cos

KCOS 
2 + 

K sin c -K) sin 0 cos 6

Kxcos2+ K sin
0

sin
2

0 + K COS

(7a)

(7b)

(7c)X = = 0.

Equation 5 yields

u -vK11

- vl2

-vK 
2]

u -vK22

D]
D 2

= 0.

Phase velocities of the characteristic waves can be immediately obtained by setting the

determinant operating on D equal to zero.

u 2 2 K 11+K22 )
K 11

-K +4K 1/2
-K22) 4K12)

We obtain two ectors corresponding to the two values for u2 On the DB plane,
WCe obtain two 1) vectors corresponding to the two values for u . On the I)B plane,

QPR No. 109
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A A
expressed in terms of the kDB base vectors el and e 2, we have

D 2  
K 1 2

D 2
1 u - VK22

Kl -K

It can be shown that the two

of the two vectors is zero.

Let

tan 2 = 2K 12 11 K22

We observe from (11) that

-2
= tan @

2K12

2 1/2

22 11 22 12/

(10)

D vectors are orthogonal, since the scalar productor

(11)

or -cot y. (12)

The two vectors are shown on the DB plane in Fig. IV-6. Equation 11 conforms with

the known results through an Eulerian angle approach.5 In the case of a uniaxial crystal

e2

D OF TYPE II
CHARACTERISTIC
WAVE

5 OF TYPE I
CHARACTERISTIC
WAVE

tIJ

Fig. IV-6.

Characteristic waves in biaxial crystals.

with K = 0, the D field vectors for the two characteristic waves coincide with the

base vectors. None of the E vectors for the two waves lie on the DB plane. They both

possess a component in the k direction. By definition, both waves are extraordinary

waves (Type I and Type II). The Type I wave becomes an ordinary wave when the

medium is uniaxial.

To give another example, we consider bianisotropic media that possess constitutive

matrices

QPR No. 109
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K= K

0

K
Z

vz

0
0 0 .

0 0

In the kDB system, the constitutive matrices become

2 2
K cos + K sin2 0

z

(K-K ) sin 0 cos 0
z

2
V cos + v z

s 2sin 0

(v-v ) sin 0 cos 0z

0s

X = =-X cos 0

-X sin 6

(K-K ) sin 0 c
z

2
K Sin 0 + K

z

(v-v ) sin 0 c

2
v sin 0 +v

z

os 0

cos 0

cos J

x cos 0 sin 0

0 0

0 0

Equation 5 yields

(u-X cos 0) 2
D 2

os 2  +v sin2 0)
z /

vK cos 2 + K s in2 L) D2
z

(15)
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(13a)

(13b)

(13c)

K

K= 0

0
0

= 0

0

(14a)

(14b)

(14c)
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Table IV-1. Electromagnetic fields for a bianisotropic medium.

The phase velocities of the two characteristic waves can be easily obtained from (15).

Other field components and the dispersion relations are summarized in Table IV-1.
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D. EMISSIVITY AND REFLECTION COEFFICIENTS FOR

STRATIFIED EARTH MEDIA

Joint Services Electronics Program (Contract DAABO7-71-C-0300)

J. A. Kong, P. S. K. Wong, D. Pao

In remote sensing of thermal radiation at GHz range, the apparent temperature of

an object originates from the sum of two components: a component that is due to

reflection of illumination from a variety of sources, and a component that is due to

thermal emission from the object. We associate with the first component a tempera-

ture T . Assume that the temperature T. represents the incident intensity of the
r 1

external sources such as that attributable to the atmosphere and that to the 3. 50K cos-

mic radiation background. If the reflectivity, r, of the object is determined, then

T = rT.. If the thermal temperature of the observed body is T h , then the other com-

ponent because of thermal emission is equal to eTh, where e is the emissivity. By

reciprocity, e = 1 - r. Physically, a perfect absorber with r = 0 such as a blackbody

is also a perfect emitter, while a perfect reflector with r = 1 does not emit. Thus

we can write the brightness temperature of the body as

Tb = eTh + (1-e)T i . (1)

We shall calculate reflection coefficients, and therefore reflectivities of a plane stratified

medium composed of n layers with different physical properties and depths. From

the reflection coefficients, the emissivities and apparent temperatures can also be

determined. We consider the n-layer plane stratified medium as shown in Fig. IV-7.

x

REGION 0 p , = 0

REGION 1 P1 ' 1 x= -d 1

REGION 2 P2 ' 2 = -d• x = - 2

REGION n Pn ' 'n

REGION t Pt , et

Fig. IV-7. Stratified medium.

x= -d
n-]

x= -d
n
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Let the x-z plane be the plane of incidence. The boundaries are situated at
th

x = , -d . -d . The (n+1) region is semi-infinite and is labeled Region t. All
1' n

of the permittivities Ei and the permeabilities i. can be real as well as imaginary. We

wish to determine the reflection coefficients for this structure and express field solu-

tions in all regions in terms of the reflection coefficients. The reflectivities, as well

as the emissivities, can be calculated from the reflection coefficients.

Let all regions be isotropic. Then a wave of arbitrary polarization can be decom-

posed into two polarization components. The component with the E vector perpendicu-

lar to the plane of incidence is referred to as perpendicular or horizontal polarization,

or as a TE wave or an s-wave. The component with the E vector parallel to the plane

of incidence is referred to as parallel or vertical polarization, or as a TM wave or a

p-wave. The p-wave component has its H field perpendicular to the plane of incidence.

To distinguish the two components, we use subscript p to denote the p-wave and sub-

script s for the s-wave.

The total reflection coefficient attributable to the stratified medium as a whole is

determined to be

21 2-1R + R exp(i2k d 1

01 01 12 12

R 2 1+
+ 1) exp[i2k 2  (d 2 -d 1  R23 23

I- 23 23

2
+ R exp[i2k (d -d )+ .. (2)

(n-1)n nx nn-1 nt . .

Equation 2 is a closed-form solution for the reflection coefficient R in continuous frac-

tions. The s- and p-wave components can be distinguished by associating subscripts s

and p to the individual Fresnel reflection coefficient R (j+1)'
The emissivity, e, of the stratified medium is

e =1 - , (3)

where r = R 2 is the reflectivity, and R is given by Eq. 2.

In Fig. IV-8, we show the emissivity of snow-covered land viewed from the nadir.

The model has 7 layers. There are 6 layers of snow with increasing density from p =

0. 1 to p 6 
= 0. 6 with increments of 0. 1 on top of land with permittivity Et = 5 E0 . The

permittivities of the snow are determined from

1.09 pi
i = (3. 2) + i(0.001)i. (4)

11
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Fig. IV-9. Model of ice-covered water.
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Fig. IV-10. Emissivity of ice-covered sea water.
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PROBING DEPTH ICE

W.ATER

+ 0
,

x 60

e 60'

L .

LOG10 fi GHz

Fig. IV-11. Probing depth for ice over water as a function
of frequency.

which is a simple formula for air-snow mixture. All layers have the same thick-

ness, d. The diagram is plotted for emissivity as a function of d, the common layer

thickness. The computer program can be used for arbitrary combination of layer

permittivities and layer thicknesses.

We shall now consider a simple two-layer model of ice-covered water (Fig. IV-9).

The permittivity for ice is taken as2

El = 3.2 + iAf,

-4
where A = 6. 4 X 10-4 GHz, and f is the frequency in GHz. The imaginary part of c1
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represents resonance absorption which is true for f > 1 GHz. Note that the Debye

absorption is negligible compared with this resonance absorption. To calculate the per-

mittivity for sea water, we use a Debye equation.3

In Fig. IV-10 we show the emissivity for ice-covered sea (assuming a salinity of

4% and temperature 00 C) plotted as a function of ice depth viewed from the nadir. The

permittivity for ice is E1 = 3. 2 + iO. 014; for sea water at 22. 2 GHz, Et = 16. 4 + i28. 7,

and at 31.4 GHz, EI = 3. 2 + iO. 02, Et = 11. 1 + i21. 8. The dashed line is plotted for

31. 4 GHz frequency, and the solid line for 22. 2 GHz frequency. It can be seen that

the emissivity damps to a constant value, where the presence of the bottom layer (sea

water) cannot be sensed.

It is interesting to investigate to what depth the subsurface can be probed with

microwaves from remote sensing. We define the probing depth d as the depth of the
P

layer when e(dp )e(c) reaches a constant value, 1. Figure IV-11 shows a plot of

depth dp (in cm) against frequency f (in GHz). Both scales are logarithmic. The

viewing angles are at 6 = 00 (the nadir) and at 0 = 60". It can be seen that the probing

depth with TE fields is greater than with TM waves at each frequency, and that the

slopes of the curves are almost constant.
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E. GEOPHYSICAL PROBING WITII DIPOLE ANTENNAS

Joint Services Electronics Program (Contract DAABO07-71-C-0300)

J. A. Kong, L. Tsang

When using electromagnetic waves in geophysical probing, antennas that are used

as sources can usually be treated as dipoles. The terrestrial areas under examina-

tion are modeled, most of the time, as a plane stratified medium. The problem of elec-

tromagnetic field radiation of dipole antennas in the presence of stratified anisotropic

media has been solved for various dipole sources and for stratified anisotropic earth.1

The solutions are obtained without using the conventional Hertzian potential functions.

The results are expressed in the form of integral representations.

Assume that the antenna source is at an elevation d from the surface of theo
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stratified medium. Choose a cylindrical coordinate system such that the dipole source

is at the origin and the z axis is perpendicular to the planes of stratification. Use p

to denote distance transverse to the z direction and 4 for azimuthal angles. When the

antennas are horizontal, we take q to be zero along the direction of the antenna. When

the antennas are vertical, we have circular symmetry and the solution is independent

of o. The solutions for the field components can, in turn, be expressed in terms of cer-

tain basic integrals. In z > do regions, the results are as follows.

Vertical Electric Dipole

k
TeP () k(e)).

J ve= dk (I+R ) H ( (k p) exp kz (1)
ve P k (e) o

z

Vertical Magnetic Dipole

k
P TE (1) (

= dk - (1+R T  H (k p) exp ik z . (2)
vm p () o p

k
z

In these expressions, superscripts TE and TM denote transverse electric and trans-

verse magnetic components, respectively. The subscripts on J (ve, vm) signify the
TE TM

kinds of dipoles with which we are dealing. T E and R , the reflection coefficients

for the TE and TM components, are expressed in terms of continuous fractions.1 The

p component of the wave vector k is kp and its z component is kz. Superscripts (e)

and (m) on kz represent the effects of electric and magnetic anisotropy of the stratified

medium.

We can define four vector operators in terms of these basic integrals to obtain all

electromagnetic field components. We write the operators in the form of column

matrices.

Vvl = a/ p (3)

a2iazap

7v9 = L (4)

kThen the results are as follows.

Then the results are as follows.
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Vertical Electric Dipole

-TM I
E ( 8TrwE v ve

-TM IVvJve

H = - r

-TE -TE
E = H = 0.

Vertical Magnetic Dipole

T E IA w ,

-TE ( IAc
H =-i T V Jvm

8T/ vl vm

-TM -TM
E = H = 0.

In these expressions It denotes the strength of the electric dipoles, and LA the strength

of the magnetic dipoles. We see that once the basic integrals of a given dipole in the

DIPOLE ANTENNA RECEIVER '0

P1 ' l

Ist IMAGE /

2d

2nd IMAGE

Fig. IV-12. Probing the subsurface with a dipole antenna.

presence of a given stratified profile are solved analytically, the field solutions can

readily be obtained by differentiation of the basic integrals. We shall consider vertical

dipoles laid on the surface of a two-layer medium (Fig. IV-12).

In geophysical probing with the interference fringe method, the dipoles and
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the observation points are on the surface. We can expand 1 + RTM

power series.

and RTE inand 1 + R in

1 - RTM = +II )

1+ RTE = (+R T)

1 + 1+R1 0 M

1 (1+R TE)

m=l

TMm-1 (RTM )m exp(i2kizmd)

TE m-1 /TE m
S10R 1 2 2 exp(i2kizmd)

m=1

(7 b)

Each term in the summation can be evaluated by the saddle-point method and attributed

to a particular image source (Fig. IV-12). The transmitting antenna radiates in all

directions. The wave that reaches the receiver without reflection from the subsurface

corresponds to the first term in both expressions. Thus, the first term is the classic

half-space solution.

8 12 16 20

DISTANCE (WAVELENGTH)

8 12 16 20

DISTANCE (WAVELENGTH)

Fig. IV-13. Interference patterns for H

component of a vertical elec -
tric dipole.

Fig. IV-14. Interference patterns for E

component of a vertical mag-
netic dipole.

The wave that arrives at the receiver after one reflection from the subsurface can

be traced back to the first image in Fig. IV-12 and is identified with the first term in

the summation series in Eq. 7. Similarly, the plane wave that arrives at the receiver

after n reflections from the subsurface is represented by the nth image and corresponds

to the nt h term in the summation series.

In Figs. IV-13 and IV-14 we illustrate the interference patterns for H of a

vertical electric dipole and E of a vertical magnetic dipole. If there is no subsurface
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reflector the spatial wavelength of the interference pattern Xin t is related to the refrac-

tion index nt of the half-space medium by n = 1 + ko /Xin t, where Xo is the free-space

wavelength corresponding to the transmitting antenna frequency. From measurements

of kin t we can estimate the value of the index of refraction of the half-space medium.

The overall patterns from a water subsurface are also illustrated in Figs. IV-13 and

IV-14. The first peak in the interference patterns for two-layer media occurs at approx-

imately 6X which can be attributed to waves reflected from the subsurface at the

critical angle in the first medium.
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F. A SBIPLIFIED) CIRCUIT MODEL FOR MIICROSTRIP

National Science Foundation (Grant GK-31012X), Cornell University

Joint Ser-vices Electronics Program (Contract D)V B07-71-C-0300)

II. J. Carlin

The adxvantage of a network model for a physical structure is that the model, if cor-

rectly established, implicitly contains the physical constraints of the actual system, and

these constraints need not subsequently be called into play for every new case. A recent

example is the case of coupled lines 1 to model longitudinally uniform but trans-

versely inhomogeneous xwavegfuides. The network model for a cylindrical waveguide

loaded concentrically with a dielectric rod comprised a TE and a TM transmission

line coupled together and the properties of this model established that, surprisingly,

the lossless wa veguide structure could support complex eigenvalues as well as back-

xward waves. The general network idea stems from Schelkunoff' who established that

uniform guide structures can be represented by an infinite number of coupled TE and

TML\1 transmission lines. The practical approximating network model is obtained by

appropriately truncating the infinite Schelkunoff representation.

In this report we show how a pair of coupled lines can gi% e an extremely simple and

useful model for Microstrip dispersion. We( take a TEM transmission line and ,

TE line and form a distributed circuit with these 2 lines coupled together. The uncoupled

lines propagate the ordinar TE1L and TEL modes. The coupled circuit automatically

represents a pair of modes which are no lonL er TEiIl or TE but instead are the two

lowest order hyvbrid modes th;at exist on the strip line. In effect, circuit theory does

the xwork in producing the required modes.

The pair of coupled lines modeling the Alicrostrip is shotwn in [ig. IV -15. The
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circuit model for the physical structure is based on the f<act that TE\I and TE type

modes excite each other by virtue of the presence of the dielectric substrate. It is

L =/ 0

TEM

C12 = k

O<k<l

TE

=4o/K
2

lig. IV-15.

T TI-TE Network model for Mijcrostrip
(per unit length).

also assumed in the model that the uncoupled TEAl and TE modes propagate at the same

velocity at very high frequencies, i. e., there is a common v alue of - for both coupled

lines.

The series impedance and shunt admittance matrices per unit length for the pair of

coupled lines in Fig. IV-15 are

Z Vp , y =1 o
12 1 0 0

l o0 0 X

I __Vl L /2j

Here p = cr + j, is complex frequency, and o', Fo are the constituti ve constants of

free space. There ,are only three constants that determine the circuit model: c, the

effective static dielectric constant for the network model, A', the, cutoff wave number

for the uncoupled TE mode, and the coupling c<apacitance 1 2 
= k, where 0 < k <- 1 is

the capacitive coefficient of coupling. The effective de dielectric constant is given

by the static relation

o)2

where the characteristic impedances of the Mlicrostrip are z with air dielectric, zO O
with substrate relative dielectric constant c . The program MSTRIIP 3 is used for the

static calculation of z o , z The squared eigenvalues y associated with ZY are givenO 0
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in normalized form as

2
Y 2 1 2 4 1

S - - k k +74

The normalized angular frequency is

S0

c / El

whe

is

re cw is the cutoff frequency of the uncoupled TE line, and the free-space velocity
c

1

The relative effective dielectric constant is

( )2
el

V
9

where v(u) is the phase velocity of propagation in the MAicrostrip corresponding to the

plus sign in the dispersion relation (3). This mode propagates down to de. The other

mode (minus sign in (3)) is cut off at low frequencies. Then from (3), (4), and (5)

X 2 v
2 o

e o 2w

2

+kr +

Thus we verify that E (0) = C.

The second constant, the coefficient of coupling k, is easily found if we assume

that at high frequencies all energy of the propagating mode is in the substrate, i. e.,

E (o) = E, the substrate dielectric constant. Thus from (6)
e s

k s (7)

There is only one more parameter to be determined, the TE cutoff wave num-

ber A. This is found by equating the frequency for the point of inflection . cal-
4 1

culated from (6), with the value given by Getsinger. 'From (6) we set

d2

S0,

dw
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which yields

(2 -1)1
/ 2

6

The Getsinger4 equation gives

z
C =

1 2 b 3G

where b is the substrate thickness, and G is a semiempirical parameter that depends

00N
-o

0

> d
o o)

a-C 73)0

0.U 00--I

a
L

0)t

0c

0o

w/b E zo  b

- 5 10.5 1725 025
2.5 10. 1 2 9.0 .050"

196 9.7 50.0 050"

,1.0 10.3 485 025"
-0.2 10.2 89.5 .050"

-- COUPLED LINE TEM-TE MODEL

I, II, I, IV, oo MEASURED DATA (GETSINGER)
V,+++ MEASURED DATA (ZYSMAN-VARON)
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FREQUENCY (GHz)

Fig. IV-16.

on z . In our circuito
Getsinger )

Theoretical vs experimental dispersion
curves for Microstrip.

model for best fit we use the relation for G (differing from

G = .500 + .001 3/ 2

Then from (8)

2 = k
R

(2r) 2

12Gb 2

/ - 2
z

o

376. 7
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Our circuit model is now completely determined from the \licrostrip geometry and

the dielectric constant c of the substrate. No interpolation to specific experimental dis-

persion data is required as in Getsinger's model.

Figure IV-16 shows dispersion curves calculated from our simple 2-coupled line

model and compared with experimental data. 4 5 The simple network model fits the

Getsinger data very well. The same mnodel also fits the measured dispersion data of

Zysman and Varon.5

12

-7-

SMODES PROPAGAT NG O dc
0B

o 4

OPOINT

w 2 4 6 8 10

-L FREQ ENCY Hz i. IV-17.
L-4 >m -4 Modes in Microstrip (TEI-TE model).

r-8

MODES CUTOFF AT dc

A B

-2 Zo  29 48 5

w/b 2 5 10

16 b 005 O 0025

-20

Figure IV-17 compares dispersion curves calculated from the model for the mode

that propagates to dc and the mode that is cut off below a finite frequency. Note that, as

we would expect, the mode that is cut off at dc exhibits a higher and higher cutoff fre-

quency as its paired propagating mode becomes less dispersive in character.

Helpful discussions with Professors Paul Penfield of -I. I. T., and Paul MicIsaac of

Cornell University are acknowledged with thanks.
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