14,632 research outputs found
Was the Accounting Profession Really That Bad?
To gain insight into the extent of malpractice in the State of California prior to the Passage of Sarbanes-Oxley, we examined the nature and magnitude of complains filed with the California Board of Accountancy (CBA) against both licensed and unlicensed accountants during the fiscal years 2000, 2001, and 2002. The CBA currently licenses and regulates over 73,000 licenses, with 1,431 complaints filed during the period reviewed. Disciplinary actions were taken against 283 different licensees for the three fiscal years reviewed. SEC issues were involved in 19 cases, theft or embezzlement 46 cases, public accounting malpractice 146 cases, improper retention of client records 11 cases, cheating on the CPA examination 9 cases, and miscellaneous other 52 cases. Over half of the complaints involved public accounting issues. Audit related complaints accounted for 48%, tax related complaints 36%, and compilations or reviews accounted for 16% of the complaints. These statistics were in line with the experience of the AICPA Professional Liability program. Within the above sections, the paper contains specifics with regards to the most common problems identified as a result of this work. While a number of interesting facts were discovered, one item of particularly interest was the significant number of claims that involved non-profit organizations. CBA administrators do not believe there is any greater tendency for non profit reporting versus for profit reporting, thus appearing to indicate this is just an area that has a greater possibility of accounting malpractice
Development of phosphorylated adhesives
The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame
The Influence of Stellar Wind Variability on Measurements of Interstellar O VI Along Sightlines to Early-Type Stars
A primary goal of the FUSE mission is to understand the origin of the O VI
ion in the interstellar medium of the Galaxy and the Magellanic Clouds. Along
sightlines to OB-type stars, these interstellar components are usually blended
with O VI stellar wind profiles, which frequently vary in shape. In order to
assess the effects of this time-dependent blending on measurements of the
interstellar O VI lines, we have undertaken a mini-survey of repeated
observations toward OB-type stars in the Galaxy and the Large Magellanic Cloud.
These sparse time series, which consist of 2-3 observations separated by
intervals ranging from a few days to several months, show that wind variability
occurs commonly in O VI (about 60% of a sample of 50 stars), as indeed it does
in other resonance lines. However, in the interstellar O VI 1032
region, the O VI 1038 wind varies only in 30% of the cases. By
examining cases exhibiting large amplitude variations, we conclude that
stellar-wind variability {\em generally} introduces negligible uncertainty for
single interstellar O VI components along Galactic lines of sight, but can
result in substantial errors in measurements of broader components or blends of
components like those typically observed toward stars in the Large Magellanic
Cloud. Due to possible contamination by discrete absorption components in the
stellar O VI line, stars with terminal velocities greater than or equal to the
doublet separation (1654 km/s) should be treated with care.Comment: Accepted for publication in the Astrophysical Journal Lette
Millimeter wave surface resistance of RBa2Cu3O(7-delta) (R=Y,Eu,Dy,Sm,Er) superconductors
The measurements are reported of the millimeter wave surface resistance R(sub s) at 58.6 GHz of bulk samples of RBa2Cu3O(7-delta) (R = Y,Eu,Dy,Sm,Er) and of YBa2Cu3O(7-delta) superconducting films, in the temperature range from 20 to 300 K. The bulk samples were prepared by cold pressing the powders of RBa2Cu3O(7-delta) into one in. disks. The powders were prepared by several sinterings in one atmosphere of oxygen at 925 C, with grindings between sinterings, to obtain the superconducting phase. The thin films were deposited on SrTiO3 and LaGaO3 substrates by pulsed laser ablation. Each sample was measured by replacing the end wall of a gold-plated Te sub 013 circular mode copper cavity with the sample and determining the cavity quality factor . From the difference in the Q-factor of the cavity, with and without the sample, the R(sub s) of the sample was determined
Electromagnetic Moments of the Baryon Decuplet
We compute the leading contributions to the magnetic dipole and electric
quadrupole moments of the baryon decuplet in chiral perturbation theory. The
measured value for the magnetic moment of the is used to determine
the local counterterm for the magnetic moments. We compare the chiral
perturbation theory predictions for the magnetic moments of the decuplet with
those of the baryon octet and find reasonable agreement with the predictions of
the large-- limit of QCD. The leading contribution to the quadrupole
moment of the and other members of the decuplet comes from one--loop
graphs. The pionic contribution is shown to be proportional to (and so
will not contribute to the quadrupole moment of nuclei), while the
contribution from kaons has both isovector and isoscalar components. The chiral
logarithmic enhancement of both pion and kaon loops has a coefficient that
vanishes in the limit. The third allowed moment, the magnetic octupole,
is shown to be dominated by a local counterterm with corrections arising at two
loops. We briefly mention the strange counterparts of these moments.Comment: Uses harvmac.tex, 15 pages with 3 PostScript figures packed using
uufiles. UCSD/PTH 93-22, QUSTH-93-05, Duke-TH-93-5
Grounding cognitive-level processes in behavior: the view from dynamic systems theory
Marr's seminal work laid out a program of research by specifying key questions for cognitive science at different levels of analysis. Because dynamic systems theory (DST) focuses on time and interdependence of components, DST research programs come to very different conclusions regarding the nature of cognitive change. We review a specific DST approach to cognitive-level processes: dynamic field theory (DFT). We review research applying DFT to several cognitive-level processes: object permanence, naming hierarchical categories, and inferring intent, that demonstrate the difference in understanding of behavior and cognition that results from a DST perspective. These point to a central challenge for cognitive science research as defined by Marr-emergence. We argue that appreciating emergence raises questions about the utility of computational-level analyses and opens the door to insights concerning the origin of novel forms of behavior and thought (e.g., a new chess strategy). We contend this is one of the most fundamental questions about cognition and behavior
Nucleons Properties at Finite Lattice Spacing in Chiral Perturbation Theory
Properties of the proton and neutron are studied in partially-quenched chiral
perturbation theory at finite lattice spacing. Masses, magnetic moments, the
matrix elements of isovector twist-2 operators and axial-vector currents are
examined at the one-loop level in a double expansion in the light-quark masses
and the lattice spacing. This work will be useful in extrapolating the results
of simulations using Wilson valence and sea quarks, as well as simulations
using Wilson sea quarks and Ginsparg-Wilson valence quarks, to the continuum.Comment: 16 pages LaTe
Codeless GPS Applications to Multi-Path: CGAMP
Cordless Global Positioning System (GPS) Applications to Multi-Path (CGAMP) is meeting the challenge of exploiting the L-band signals from the Global Positioning System (GPS) satellites for the measurement of the impulse response of radio transmission channels over space-Earth paths. This approach was originally suggested by E. K. Smith and has been pursued by J. Lemmon, without an affordable implementation being identifiable. In addition to the high cost of a suitable P code correlating GPS receiver, there is also the major impediment of the often announced Department of Defense policy of selective availability/anti-spoof (SA/AS) that clouds reliable access to the wideband (20 MHz) P channel of the GPS signals without cryptographic access. A technique proposed by MacDoran utilizes codeless methods for exploiting the P channel signals implemented by the use of a pair of antennas and cross correlation signal detection
Breakdown of Energy Equipartition in a 2D Binary Vibrated Granular Gas
We report experiments on the equipartition of kinetic energy between grains
made of two different materials in a mixture of grains vibrated in 2
dimensions. In general, the two types of grains do not attain the same granular
temperature, Tg = 1/2m v^2. However, the ratio of the two temperatures is
constant in the bulk of the system and independent of the vibration velocity.
The ratio depends strongly on the ratio of mass densities of the grains, but is
not sensitive to the inelasticity of grains. Also, this ratio is insensitive to
compositional variables of the mixture such as the number fraction of each
component and the total number density. We conclude that a single granular
temperature, as traditionally defined, does not characterize a multi-component
mixture.Comment: 4 pages, 5 figures, submitted to Physical Review Letters, updated
reference
Does gravity cause load-bearing bridges in colloidal and granular systems?
We study structures which can bear loads, "bridges", in particulate packings. To investigate the relationship between bridges and gravity, we experimentally determine bridge statistics in colloidal packings. We vary the effective magnitude and direction of gravity, volume fraction, and interactions, and find that the bridge size distributions depend only on the mean number of neighbors. We identify a universal distribution, in agreement with simulation results for granulars, suggesting that applied loads merely exploit preexisting bridges, which are inherent in dense packings
- …