437 research outputs found

    Measuring the undetectable: Proper motions and parallaxes of very faint sources

    Full text link
    The near future of astrophysics involves many large solid-angle, multi-epoch, multi-band imaging surveys. These surveys will, at their faint limits, have data on large numbers of sources that are too faint to be detected at any individual epoch. Here we show that it is possible to measure in multi-epoch data not only the fluxes and positions, but also the parallaxes and proper motions of sources that are too faint to be detected at any individual epoch. The method involves fitting a model of a moving point source simultaneously to all imaging, taking account of the noise and point-spread function in each image. By this method it is possible to measure the proper motion of a point source with an uncertainty close to the minimum possible uncertainty given the information in the data, which is limited by the point-spread function, the distribution of observation times (epochs), and the total signal-to-noise in the combined data. We demonstrate our technique on multi-epoch Sloan Digital Sky Survey imaging of the SDSS Southern Stripe. We show that we can distinguish very red brown dwarfs by their proper motions from very high-redshift quasars more than 1.6\mag fainter than with traditional technique on these SDSS data, and with better better fidelity than by multi-band imaging alone. We re-discover all 10 known brown dwarfs in our sample and present 9 new candidate brown dwarfs, identified on the basis of high proper motion.Comment: AJ, in pres

    Solving the Corner-Turning Problem for Large Interferometers

    Get PDF
    The so-called corner turning problem is a major bottleneck for radio telescopes with large numbers of antennas. The problem is essentially that of rapidly transposing a matrix that is too large to store on one single device; in radio interferometry, it occurs because data from each antenna needs to be routed to an array of processors that will each handle a limited portion of the data (a frequency range, say) but requires input from each antenna. We present a low-cost solution allowing the correlator to transpose its data in real time, without contending for bandwidth, via a butterfly network requiring neither additional RAM memory nor expensive general-purpose switching hardware. We discuss possible implementations of this using FPGA, CMOS, analog logic and optical technology, and conclude that the corner turner cost can be small even for upcoming massive radio arrays.Comment: Revised to match accepted MNRAS version. 7 pages, 4 fig

    Modulation of Corneal Fibroblast Contractility within Fibrillar Collagen Matrices

    Get PDF
    PURPOSE. To investigate the migratory and contractile behavior of isolated human corneal fibroblasts in fibrillar collagen matrices. METHODS. A telomerase-infected, extended-lifespan human corneal fibroblast cell line (HTK) was transfected by using a vector for enhanced green fluorescent protein (GFP)-α-actinin. Cells were plated at low density on top of or within 100-μm-thick fibrillar collagen lattices. After 18 hours to 7 days, time-lapse imaging was performed. At each 1- to 3-minute interval, GFP and Nomarski differential interference contrast (DIC) images were acquired in rapid succession. Serum-containing (S+) medium was used initially for perfusion. After 2 hours, perfusion was switched to either serum-free (S-) or S+ medium containing the Rho-kinase inhibitor Y-27632 for 1 to 2 hours. Finally, perfusion was changed back to S+ medium for 1 hour. RESULTS. Two to 4 days after plating, many cells underwent spontaneous contraction and/or relaxation in S+ medium. A decrease in the distance between consecutive α-actinin-dense bodies along stress fibers was measured during contraction, and focal adhesion and matrix displacements correlated significantly. Removal of serum or inhibition of Rho-kinase induced cell body elongation and relaxation of matrix stress, as confirmed using finite element modeling. Rapid formation and extension of pseudopodia and filopodia were also observed, and transient tractional forces were generated by these extending processes. CONCLUSIONS. Cultured human corneal fibroblasts can undergo rapid changes in the subcellular pattern of force generation that are mediated, in part, by Rho-kinase. Sarcomeric shortening of stress fibers in contracting corneal fibroblasts is also demonstrated for the first time

    The Algorithm Theoretical Basis Document for Level 1A Processing

    Get PDF
    The first process of the Geoscience Laser Altimeter System (GLAS) Science Algorithm Software converts the Level 0 data into the Level 1A Data Products. The Level 1A Data Products are the time ordered instrument data converted from counts to engineering units. This document defines the equations that convert the raw instrument data into engineering units. Required scale factors, bias values, and coefficients are defined in this document. Additionally, required quality assurance and browse products are defined in this document

    Polarimetry and the High-Energy Emission Mechanisms in Quasar Jets

    Full text link
    The emission mechanisms in extragalactic jets include synchrotron and various inverse-Compton processes. At low (radio through infrared) energies, it is widely agreed that synchrotron emission dominates in both low-power (FR I) and high-power (FR II and quasar) jets, because of the power-law nature of the spectra observed and high polarizations. However, at higher energies, the emission mechanism for high-power jets at kpc scales is hotly debated. Two mechanisms have been proposed: either inverse-Compton of cosmic microwave background photons or synchrotron emission from a second, high-energy population of electrons. Here we discuss optical polarimetry as a method for diagnosing the mechanism for the high-energy emission in quasar jets, as well as revealing the jet's three-dimensional energetic and magnetic field structure. We then discuss high-energy emission mechanisms for powerful jets in the light of the HST polarimetry of PKS 1136-135.Comment: 4 pages, 1 figure. To appear in proceedings of "The Monster's Fiery Breath: Feedback in galaxies, groups, and clusters" meeting, June 1-5, 2009 held in Madison, WI, US

    Discovery of an X-ray Jet and Extended Jet Structure in the Quasar PKS 1055+201

    Get PDF
    This letter reports rich X-ray jet structures found in the Chandra observation of PKS 1055+201. In addition to an X-ray jet coincident with the radio jet we detect a region of extended X-ray emission surrounding the jet as far from the core as the radio hotspot to the North, and a similar extended X-ray region along the presumed path of the unseen counterjet to the Southern radio lobe. Both X-ray regions show a similar curvature to the west, relative to the quasar. We interpret this as the first example where we separately detect the X-ray emission from a narrow jet and extended, residual jet plasma over the entire length of a powerful FRII jet.Comment: Accepted for publication in Ap. J. Letters. 4 pages, 3 figure
    • …
    corecore