1,234 research outputs found

    Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry

    Get PDF
    In this paper a systematic approach to the design of bulk isotropic magnetic metamaterials is presented. The role of the symmetries of both the constitutive element and the lattice are analyzed. For this purpose it is assumed that the metamaterial is composed by cubic SRR resonators, arranged in a cubic lattice. The minimum symmetries needed to ensure an isotropic behavior are analyzed, and some particular configurations are proposed. Besides, an equivalent circuit model is proposed for the considered cubic SRR resonators. Experiments are carried out in order to validate the proposed theory. We hope that this analysis will pave the way to the design of bulk metamaterials with strong isotropic magnetic response, including negative permeability and left-handed metamaterials.Comment: Submitted to Physical Review B, 23 page

    Processing and Transmission of Information

    Get PDF
    Contains reports on seven research projects.Lincoln Laboratory, Purchase Order DDL B-00337U.S. ArmyU.S. NavyU.S. Air Force under Air Force Contract AF19(604)-7400National Institutes of Health (Grant MH-04737-02

    Tunable Double Negative Band Structure from Non-Magnetic Coated Rods

    Full text link
    A system of periodic poly-disperse coated nano-rods is considered. Both the coated nano-rods and host material are non-magnetic. The exterior nano-coating has a frequency dependent dielectric constant and the rod has a high dielectric constant. A negative effective magnetic permeability is generated near the Mie resonances of the rods while the coating generates a negative permittivity through a field resonance controlled by the plasma frequency of the coating and the geometry of the crystal. The explicit band structure for the system is calculated in the sub-wavelength limit. Tunable pass bands exhibiting negative group velocity are generated and correspond to simultaneously negative effective dielectric permittivity and magnetic permeability. These can be explicitly controlled by adjusting the distance between rods, the coating thickness, and rod diameters

    Unified Homogenization Theory for Magnetoinductive and Electromagnetic Waves in Split Ring Metamaterials

    Full text link
    A unified homogenization procedure for split ring metamaterials taking into account time and spatial dispersion is introduced. The procedure is based on two coupled systems of equations. The first one comes from an approximation of the metamaterial as a cubic arrangement of coupled LC circuits, giving the relation between currents and local magnetic field. The second equation comes from macroscopic Maxwell equations, and gives the relation between the macroscopic magnetic field and the average magnetization of the metamaterial. It is shown that electromagnetic and magnetoinductive waves propagating in the metamaterial are obtained from this analysis. Therefore, the proposed time and spatially dispersive permeability accounts for the characterization of the complete spectrum of waves of the metamaterial. Finally, it is shown that the proposed theory is in good quantitative and qualitative agreement with full wave simulations.Comment: 4 pages, 3 figure

    Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter

    Get PDF
    AbstractActivation of gene transcription involves chromatin remodeling by coactivator proteins that are recruited by DNA-bound transcription factors. Local modification of chromatin structure at specific gene promoters by ATP-dependent processes and by posttranslational modifications of histone N-terminal tails provides access to RNA polymerase II and its accompanying transcription initiation complex [1, 2]. While the roles of lysine acetylation, serine phosphorylation, and lysine methylation of histones in chromatin remodeling are beginning to emerge [2–5], low levels of arginine methylation of histones have only recently been documented [4, 6–9], and its physiological role is unknown. The coactivator CARM1 methylates histone H3 at Arg17 and Arg26 in vitro [7] and cooperates synergistically with p160-type coactivators (e.g., GRIP1, SRC-1, ACTR) and coactivators with histone acetyltransferase activity (e.g., p300, CBP) to enhance gene activation by steroid and nuclear hormone receptors (NR) in transient transfection assays [10, 11]. In the current study, CARM1 cooperated with GRIP1 to enhance steroid hormone-dependent activation of stably integrated mouse mammary tumor virus (MMTV) promoters, and this coactivator function required the methyltransferase activity of CARM1. Chromatin immunoprecipitation assays and immunofluorescence studies indicated that CARM1 and the CARM1-methylated form of histone H3 specifically associated with a large tandem array of MMTV promoters in a hormone-dependent manner. Thus, arginine-specific histone methylation by CARM1 is an important part of the transcriptional activation process

    Metamaterials proposed as perfect magnetoelectrics

    Full text link
    Magnetoelectric susceptibility of a metamaterial built from split ring resonators have been investigated both experimentally and within an equivalent circuit model. The absolute values have been shown to exceed by two orders of magnitude that of classical magnetoelectric materials. The metamaterial investigated reaches the theoretically predicted value of the magnetoelectric susceptibility which is equal to the geometric average of the electric and magnetic susceptibilities.Comment: 5 pages, 3 figure
    • …
    corecore