23,296 research outputs found

    Supersonic Stall Flutter of High Speed Fans

    Get PDF
    An analytical model is developed for predicting the onset of supersonic stall bending flutter in axial flow compressors. The analysis is based on a modified two dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils whose geometry and dynamic response coincide with those of a rotor blade element at 85 percent of the span height (measured from the hub). The rotor blades are assumed to be unshrouded (i.e., free standing) and to vibrate in their first flexural mode. The effects of shock waves and flow separation are included in the model through quasi-steady, empirical, rotor total-pressure-loss and deviation-angle correlations. The actuator disk model predicts the unsteady aerodynamic force acting on the cascade blading as a function of the steady flow field entering the cascade and the geometry and dynamic response of the cascade. Calculations show that the present model predicts the existence of a bending flutter mode at supersonic inlet Mach numbers. This flutter mode is suppressed by increasing the reduced frequency of the system or by reducing the steady state aerodynamic loading on the cascade. The validity of the model for predicting flutter is demonstrated by correlating the measured flutter boundary of a high speed fan stage with its predicted boundary. This correlation uses a level of damping for the blade row (i.e., the log decrement of the rotor system) that is estimated from the experimental flutter data. The predicted flutter boundary is shown to be in good agreement with the measured boundary

    EOD systems and facilities workload requirements forecast

    Get PDF
    There are no author-identified significant results in this report

    Environmental charging of spacecraft surfaces: Tests of thermal control materials for use on the global positioning system flight space vehicle. Part 1: Specimens 1 to 5

    Get PDF
    The NASA/USAF program on Environmental Charging of Spacecraft Surfaces consists of experimental efforts directed toward evaluating the response of materials to the environmental charged particle flux. Samples of thermal blankets and second surface mirrors of the type to be used on the Global Positioning System Flight Space Vehicle were tested to determine their response to electron flux. The primary result observed was that the ground connection of the metal layers of the blanket, as made by the baseline grounding technique using serrated washers and grommets, deteriorated with time at test. The discharges observed on the blankets were the glow type, not the 'lightning' strike observed on past specimens. Testing was performed at ambient laboratory temperatures

    Preliminary report on the CTS transient event counter performance through the 1976 spring eclipse season

    Get PDF
    The transient event counter (TEC), senses and counts transients having a voltage rise of greater than five volts in three separate wire harnesses: the attitude control harness, the solar array instrumentation harness and the solar array power harness. The operational characteristics of TEC are defined and the preliminary results obtained through the first 90 days of operation including the spring 1976 eclipse season are presented. The results show that the Communications Technology Satellite was charged to the point where discharges occurred. The discharge induced transients did not cause any anomalous events in spacecraft operation. The data indicate that discharges can occur at any time during the day without preference to any local time quadrant. The number of discharges occurring in the one second sample interval are greater than anticipated. The compilation and review of the data is continuing

    Variations of the amplitudes of oscillation of the Be star Achernar

    Get PDF
    We report on finding variations in amplitude of the two main oscillation frequencies found in the Be star Achernar, over a period of 5 years. They were uncovered by analysing photometric data of the star from the SMEI instrument. The two frequencies observed, 0.775 c/d and 0.725 c/d, were analysed in detail and their amplitudes were found to increase and decrease significantly over the 5-year period, with the amplitude of the 0.725 c/d frequency changing by up to a factor of eight. The nature of this event has yet to be properly understood, but the possibility of it being due to the effects of a stellar outburst or a stellar cycle are discussed.Comment: 6 pages, 6 figures, 1 table, to be published in MNRA

    Asteroseismology of red giants: photometric observations of Arcturus by SMEI

    Full text link
    We present new results on oscillations of the K1.5 III giant Arcturus (alpha Boo), from analysis of just over 2.5 yr of precise photometric observations made by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. A strong mode of oscillation is uncovered by the analysis, having frequency 3.51+/-0.03 micro-Hertz. By fitting its mode peak, we are able offer a highly constrained direct estimate of the damping time (tau = 24+/-1 days). The data also hint at the possible presence of several radial-mode overtones, and maybe some non-radial modes. We are also able to measure the properties of the granulation on the star, with the characteristic timescale for the granulation estimated to be 0.50+/-0.05 days.Comment: 6 pages, 5 figures; accepted for publication in MNRAS Letter
    • …
    corecore