51,649 research outputs found
Regulating Highly Automated Robot Ecologies: Insights from Three User Studies
Highly automated robot ecologies (HARE), or societies of independent
autonomous robots or agents, are rapidly becoming an important part of much of
the world's critical infrastructure. As with human societies, regulation,
wherein a governing body designs rules and processes for the society, plays an
important role in ensuring that HARE meet societal objectives. However, to
date, a careful study of interactions between a regulator and HARE is lacking.
In this paper, we report on three user studies which give insights into how to
design systems that allow people, acting as the regulatory authority, to
effectively interact with HARE. As in the study of political systems in which
governments regulate human societies, our studies analyze how interactions
between HARE and regulators are impacted by regulatory power and individual
(robot or agent) autonomy. Our results show that regulator power, decision
support, and adaptive autonomy can each diminish the social welfare of HARE,
and hint at how these seemingly desirable mechanisms can be designed so that
they become part of successful HARE.Comment: 10 pages, 7 figures, to appear in the 5th International Conference on
Human Agent Interaction (HAI-2017), Bielefeld, German
Unambiguous Acquisition and Tracking Technique for General BOC Signals
This article presents a new unambiguous acquisition and tracking technique for general Binary Offset Carrier (BOC) ranging signals, which will be used in modern GPS, European Galileo system and Chinese BeiDou system. The test criterion employed in this technique is based on a synthesized correlation function which completely removes positive side peaks while keeping the sharp main peak. Simulation results indicate that the proposed technique completely removes the ambiguity threat in the acquisition process while maintaining relatively higher acquisition performance for low order BOC signals. The potential false lock points in the tracking phase for any order BOC signals are avoided by using the proposed method. Impacts of thermal noise and multipath on the proposed technique are investigated; the simulation results show that the new method allows the removal of false lock points with slightly degraded tracking performance. In addition, this method is convenient to implement via logic circuits
Accelerator measurement of the energy spectra of neutrons emitted in the interaction of 3-GeV protons with several elements
The application of time of flight techniques for determining the shapes of the energy spectra of neutrons between 20 and 400 MeV is discussed. The neutrons are emitted at 20, 34, and 90 degrees in the bombardment of targets by 3 GeV protons. The targets used are carbon, aluminum, cobalt, and platinum with cylindrical cross section. Targets being bombarded are located in the internal circulating beam of a particle accelerator
A Simplified Scheme of Estimation and Cancellation of Companding Noise for Companded Multicarrier Transmission Systems
Nonlinear companding transform is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise greatly degrades the bit-error-rate (BER) performance of the companded multicarrier systems. In this paper, a simplified but effective scheme of estimation and cancellation of companding noise for the companded multicarrier transmission system is proposed. By expressing the companded signals as the summation of original signals added with a companding noise component, and subtracting this estimated companding noise from the received signals, the BER performance of the overall system can be significantly improved. Simulation results well confirm the great advantages of the proposed scheme over other conventional decompanding or no decompanding schemes under various situations
Recommended from our members
Parametric Analysis of the Selective Laser Sintering Process
Qualitative and quantitative analyses are required to develop Selective Laser
Sintering into a viable Manufacturing process. A simplified mathematical model for
sintering incorporating the heat tJ;ansfer equation. and the sintering rate equation, but using
temperature independent thermal properties, is presented in this paper. A practical result is
the calculation of sintering depthdeftned as the depth of powder where the void fraction is
less than 0.1 as a function of control parameters, such as the laser power intensity, the laser
scanning velocity, and the initial bedtemperature. We derive the general behavior of laser
sintering. A comparison of model predictions with laser sinterlng tests is provided.Mechanical Engineerin
Ghost imaging without beam splitter
Many significant results have been achieved in the fields of ghost imaging,
in which the beam splitter is an indispensable optical component. This paper
introduces a method to realize ghost imaging without beam splitter. And we
study this method experimentally and theoretically. Finally, we suggest that
our device can be applied to implement the ghost imaging when we use the Sun
light as the light source
- …