1,487 research outputs found

    Femtosecond study of the interplay between excitons, trions, and carriers in (Cd,Mn)Te quantum wells

    Full text link
    We present an absorption study of the neutral and positively charged exciton (trion) under the influence of a femtosecond, circularly polarized, resonant pump pulse. Three populations are involved: free holes, excitons, and trions, all exhibiting transient spin polarization. In particular, a polarization of the hole gas is created by the formation of trions. The evolution of these populations is studied, including the spin flip and trion formation processes. The contributions of several mechanisms to intensity changes are evaluated, including phase space filling and spin-dependent screening. We propose a new explanation of the oscillator strength stealing phenomena observed in p-doped quantum wells, based on the screening of neutral excitons by charge carriers. We have also found that binding heavy holes into charged excitons excludes them from the interaction with the rest of the system, so that oscillator strength stealing is partially blockedComment: 4 pages, 4 figure

    Kinetic Characterization and X-ray Structure of a Mutant of Haloalkane Dehalogenase with Higher Catalytic Activity and Modified Substrate Range

    Get PDF
    Conversion of halogenated aliphatics by haloalkane dehalogenase proceeds via the formation of a covalent alkyl-enzyme intermediate which is subsequently hydrolyzed by water. In the wild type enzyme, the slowest step for both 1,2-dichloroethane and 1,2-dibromoethane conversion is a unimolecular enzyme isomerization preceding rapid halide dissociation. Phenylalanine 172 is located in a helix-loop-helix structure that covers the active site cavity of the enzyme, interacts with the Clβ of 1,2-dichloroethane during catalysis, and could be involved in stabilization of this helix-loop-helix region of the cap domain of the enzyme. To obtain more information about the role of this residue in dehalogenase function, we performed a mutational analysis of position 172 and studied the kinetics and X-ray structure of the Phe172Trp enzyme. The Phe172Trp mutant had a 10-fold higher kcat/Km for 1-chlorohexane and a 2-fold higher kcat for 1,2-dibromoethane than the wild-type enzyme. The X-ray structure of the Phe172Trp enzyme showed a local conformational change in the helix-loop-helix region that covers the active site. This could explain the elevated activity for 1-chlorohexane of the Phe172Trp enzyme, since it allows this large substrate to bind more easily in the active site cavity. Pre-steady-state kinetic analysis showed that the increase in kcat found for 1,2-dibromoethane conversion could be attributed to an increase in the rate of an enzyme isomerization step that preceeds halide release. The observed conformational difference between the helix-loop-helix structures of the wild-type enzyme and the faster mutant suggests that the isomerization required for halide release could be a conformational change that takes place in this region of the cap domain of the dehalogenase. It is proposed that Phe172 is involved in stabilization of the helix-loop-helix structure that covers the active site of the enzyme and creates a rigid hydrophobic cavity for small apolar halogenated alkanes.

    A Cantor set of tori with monodromy near a focus-focus singularity

    Full text link
    We write down an asymptotic expression for action coordinates in an integrable Hamiltonian system with a focus-focus equilibrium. From the singularity in the actions we deduce that the Arnol'd determinant grows infinitely large near the pinched torus. Moreover, we prove that it is possible to globally parametrise the Liouville tori by their frequencies. If one perturbs this integrable system, then the KAM tori form a Whitney smooth family: they can be smoothly interpolated by a torus bundle that is diffeomorphic to the bundle of Liouville tori of the unperturbed integrable system. As is well-known, this bundle of Liouville tori is not trivial. Our result implies that the KAM tori have monodromy. In semi-classical quantum mechanics, quantisation rules select sequences of KAM tori that correspond to quantum levels. Hence a global labeling of quantum levels by two quantum numbers is not possible.Comment: 11 pages, 2 figure

    Polar type density of states in non-unitary odd-parity superconducting states of gap with point nodes

    Full text link
    It is shown that the density of states (DOS) proportional to the excitation energy, the so-called polar like DOS, can arise in the odd-parity states with the superconducting gap vanishing at points even if the spin-orbit interaction for Cooper pairing is strong enough. Such gap stuructures are realized in the non-unitary states, F_{1u}(1,i,0), F_{1u}(1,varepsilon,varepsilon^{2}), and F_{2u}(1,i,0), classified by Volovik and Gorkov, Sov. Phys.-JETP Vol.61 (1985) 843. This is due to the fact that the gap vanishes in quadratic manner around the point on the Fermi surface. It is also shown that the region of quadratic energy dependence of DOS, in the state F_{2u}(1,varepsilon,varepsilon^{2}), is restricted in very small energy region making it difficult to distinguish from the polar-like DOS.Comment: 5 pages, 3 figures, submitted to J. Phys.: Condens. Matter Lette

    Neutron-induced background in the CONUS experiment

    Full text link
    CONUS is a novel experiment aiming at detecting elastic neutrino nucleus scattering in the fully coherent regime using high-purity Germanium (Ge) detectors and a reactor as antineutrino (νˉ\bar\nu) source. The detector setup is installed at the commercial nuclear power plant in Brokdorf, Germany, at a very small distance to the reactor core in order to guarantee a high flux of more than 1013νˉ^{13}\bar\nu/(s\cdotcm2^2). For the experiment, a good understanding of neutron-induced background events is required, as the neutron recoil signals can mimic the predicted neutrino interactions. Especially neutron-induced events correlated with the thermal power generation are troublesome for CONUS. On-site measurements revealed the presence of a thermal power correlated, highly thermalized neutron field with a fluence rate of (745±\pm30)cm2^{-2}d1^{-1}. These neutrons that are produced by nuclear fission inside the reactor core, are reduced by a factor of \sim1020^{20} on their way to the CONUS shield. With a high-purity Ge detector without shield the γ\gamma-ray background was examined including highly thermal power correlated 16^{16}N decay products as well as γ\gamma-lines from neutron capture. Using the measured neutron spectrum as input, it was shown, with the help of Monte Carlo simulations, that the thermal power correlated field is successfully mitigated by the installed CONUS shield. The reactor-induced background contribution in the region of interest is exceeded by the expected signal by at least one order of magnitude assuming a realistic ionization quenching factor of 0.2.Comment: 28 pages, 28 figure

    The Role of Nonequilibrium Dynamical Screening in Carrier Thermalization

    Full text link
    We investigate the role played by nonequilibrium dynamical screening in the thermalization of carriers in a simplified two-component two-band model of a semiconductor. The main feature of our approach is the theoretically sound treatment of collisions. We abandon Fermi's Golden rule in favor of a nonequilibrium field theoretic formalism as the former is applicable only in the long-time regime. We also introduce the concept of nonequilibrium dynamical screening. The dephasing of excitonic quantum beats as a result of carrier-carrier scattering is brought out. At low densities it is found that the dephasing times due to carrier-carrier scattering is in picoseconds and not femtoseconds, in agreement with experiments. The polarization dephasing rates are computed as a function of the excited carrier density and it is found that the dephasing rate for carrier-carrier scattering is proportional to the carrier density at ultralow densities. The scaling relation is sublinear at higher densities, which enables a comparison with experiment.Comment: Revised version with additional refs. 12 pages, figs. available upon request; Submitted to Phys. Rev.

    Propagation of a hole on a Neel background

    Full text link
    We analyze the motion of a single hole on a N\'eel background, neglecting spin fluctuations. Brinkman and Rice studied this problem on a cubic lattice, introducing the retraceable-path approximation for the hole Green's function, exact in a one-dimensional lattice. Metzner et al. showed that the approximationalso becomes exact in the infinite-dimensional limit. We introduce a new approach to this problem by resumming the Nagaoka expansion of the propagator in terms of non-retraceable skeleton-paths dressed by retraceable-path insertions. This resummation opens the way to an almost quantitative solution of the problemin all dimensions and, in particular sheds new light on the question of the position of the band-edges. We studied the motion of the hole on a double chain and a square lattice, for which deviations from the retraceable-path approximation are expected to be most pronounced. The density of states is mostly adequately accounted for by the retra\-ce\-able-path approximation. Our band-edge determination points towards an absence of band tails extending to the Nagaoka energy in the spectrums of the double chain and the square lattice. We also evaluated the spectral density and the self-energy, exhibiting k-dependence due to finite dimensionality. We find good agreement with recent numerical results obtained by Sorella et al. with the Lanczos spectra decoding method. The method we employ enables us to identify the hole paths which are responsible for the various features present in the density of states and the spectral density.Comment: 26 pages,Revte

    Spectral functions of the Falicov-Kimball model with electronic ferroelectricity

    Get PDF
    We calculate the angular resolved photoemission spectrum of the Falicov-Kimball model with electronic ferroelectricity where dd- and ff-electrons have different hoppings. In mix-valence regimes, the presence of strong scattering processes between dd-ff excitons and a hole, created by emission of an electron, leads to the formation of pseudospin polarons and novel electronic structures with bandwidth scaling with that of dd-ff excitons. Especially, in the two-dimensional case, we find that flat regions exist near the bottom of the quasiparticle band in a wide range of the dd- and ff-level energy difference.Comment: 5 pages, 5 figure

    Acoustically driven storage of light in a quantum well

    Full text link
    The strong piezoelectric fields accompanying a surface acoustic wave on a semiconductor quantum well structure are employed to dissociate optically generated excitons and efficiently trap the created electron hole pairs in the moving lateral potential superlattice of the sound wave. The resulting spatial separation of the photogenerated ambipolar charges leads to an increase of the radiative lifetime by orders of magnitude as compared to the unperturbed excitons. External and deliberate screening of the lateral piezoelectric fields triggers radiative recombination after very long storage times at a remote location on the sample.Comment: 4 PostScript figures included, Physical Review Letters, in pres

    Cumulant approach to weakly doped antiferromagnets

    Full text link
    We present a new approach to static and dynamical properties of holes and spins in weakly doped antiferromagnets in two dimensions. The calculations are based on a recently introduced cumulant approach to ground--state properties of correlated electronic systems. The present method allows to evaluate hole and spin--wave dispersion relations by considering hole or spin excitations of the ground state. Usually, these dispersions are found from time--dependent correlation functions. To demonstrate the ability of the approach we first derive the dispersion relation for the lowest single hole excitation at half--filling. However, the main purpose of this paper is to focus on the mutual influence of mobile holes and spin waves in the weakly doped system. It is shown that low-energy spin excitations strongly admix to the ground--state. The coupling of spin waves and holes leads to a strong suppression of the staggered magnetization which can not be explained by a simple rigid--band picture for the hole quasiparticles. Also the experimentally observed doping dependence of the spin--wave excitation energies can be understood within our formalism.Comment: REVTEX, 25 pages, 7 figures (EPS), to be published in Phys. Rev.
    corecore