8,630 research outputs found
A preliminary case study of the effect of shoe-wearing on the biomechanics of a horse’s foot
Horse racing is a multi-billion-dollar industry that has raised welfare concerns due to injured and euthanized animals. Whilst the cause of musculoskeletal injuries that lead to horse morbidity and mortality is multifactorial, pre-existing pathologies, increased speeds and substrate of the racecourse are likely contributors to foot disease. Horse hooves have the ability to naturally deform during locomotion and dissipate locomotor stresses, yet farriery approaches are utilised to increase performance and protect hooves from wear. Previous studies have assessed the effect of different shoe designs on locomotor performance; however, no biomechanical study has hitherto measured the effect of horseshoes on the stresses of the foot skeleton in vivo. This preliminary study introduces a novel methodology combining three-dimensional data from biplanar radiography with inverse dynamics methods and finite element analysis (FEA) to evaluate the effect of a stainless steel shoe on the function of a Thoroughbred horse's forefoot during walking. Our preliminary results suggest that the stainless steel shoe shifts craniocaudal, mediolateral and vertical GRFs at mid-stance. We document a similar pattern of flexion-extension in the PIP (pastern) and DIP (coffin) joints between the unshod and shod conditions, with slight variation in rotation angles throughout the stance phase. For both conditions, the PIP and DIP joints begin in a flexed posture and extend over the entire stance phase. At mid-stance, small differences in joint angle are observed in the PIP joint, with the shod condition being more extended than the unshod horse, whereas the DIP joint is extended more in the unshod than the shod condition. We also document that the DIP joint extends more than the PIP after midstance and until the end of the stance in both conditions. Our FEA analysis, conducted solely on the bones, shows increased von Mises and Maximum principal stresses on the forefoot phalanges in the shod condition at mid-stance, consistent with the tentative conclusion that a steel shoe might increase mechanical loading. However, because of our limited sample size none of these apparent differences have been tested for statistical significance. Our preliminary study illustrates how the shoe may influence the dynamics and mechanics of a Thoroughbred horse's forefoot during slow walking, but more research is needed to quantify the effect of the shoe on the equine forefoot during the whole stance phase, at faster speeds/gaits and with more individuals as well as with a similar focus on the hind feet. We anticipate that our preliminary analysis using advanced methodological approaches will pave the way for new directions in research on the form/function relationship of the equine foot, with the ultimate goal to minimise foot injuries and improve animal health and welfare
Anatomical and biomechanical traits of broiler chickens across ontogeny. Part II. Body segment inertial properties and muscle architecture of the pelvic limb
In broiler chickens, genetic success for desired production traits is often shadowed by welfare concerns related to musculoskeletal health. Whilst these concerns are clear, a viable solution is still elusive. Part of the solution lies in knowing how anatomical changes in afflicted body systems that occur across ontogeny influence standing and moving. Here, to demonstrate these changes we quantify the segment inertial properties of the whole body, trunk (legs removed) and the right pelvic limb segments of five broilers at three different age groups across development. We also consider how muscle architecture (mass, fascicle length and other properties related to mechanics) changes for selected muscles of the pelvic limb. All broilers used had no observed lameness, but we document the limb pathologies identified post mortem, since these two factors do not always correlate, as shown here. The most common leg disorders, including bacterial chondronecrosis with osteomyelitis and rotational and angular deformities of the lower limb, were observed in chickens at all developmental stages. Whole limb morphology is not uniform relative to body size, with broilers obtaining large thighs and feet between four and six weeks of age. This implies that the energetic cost of swinging the limbs is markedly increased across this growth period, perhaps contributing to reduced activity levels. Hindlimb bone length does not change during this period, which may be advantageous for increased stability despite the increased energetic costs. Increased pectoral muscle growth appears to move the centre of mass cranio-dorsally in the last two weeks of growth. This has direct consequences for locomotion (potentially greater limb muscle stresses during standing and moving). Our study is the first to measure these changes in the musculoskeletal system across growth in chickens, and reveals how artificially selected changes of the morphology of the pectoral apparatus may cause deficits in locomotion
Pulsar "Drifting"-Subpulse Polarization: No Evidence for Systematic Polarization-Angle Rotations
Polarization-angle density displays are given for pulsars B0809+74 and
B2303+30, which exhibit no evidence of the systematic polarization-angle
rotation within individual subpulses previously reported for these two stars.
The ``drifting'' subpulses of both pulsars exhibit strikingly linear and
circular polarization which appears to reflect the characteristics of two
nearly orthogonally polarized emission ``modes''--along which the severe
average-profile depolarization that is characteristic of their admixture at
comparable overall intensities.Comment: Accepted for publication in Astronomy & Astrophysic
Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion
We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force–length or force–velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model’s results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa
RF model of the distribution system as a communication channel, phase 2. Volume 3: Appendices
Program documentation concerning the design, implementation, and verification of a computerized model for predicting the steady-state sinusoidal response of radial configured distribution feeders is presented in these appendices
RF model of the distribution system as a communication channel, phase 2. Volume 4: Sofware source program and illustrations ASCII database listings
Listings of source programs and some illustrative examples of various ASCII data base files are presented. The listings are grouped into the following categories: main programs, subroutine programs, illustrative ASCII data base files. Within each category files are listed alphabetically
Should Higher Education respond to recent changes in the forensic science marketplace?
The evolution of forensic science within the United Kingdom over the past four decades has been rapid and dynamic. This has included policy responses to highly public miscarriages of justice, introduction of commercialisation and pioneering scientific developments such as DNA profiling. However even within this context, changes within forensic science over the last two years has been unprecedented; such as the closure of The Forensic Science Service; a Home Office review of Research and Development within forensic science; the challenges facing fingerprint identification as a result of The Fingerprint Inquiry (Scotland) and the embryonic development of a new professional body for the police force. Correspondingly, development of forensic science within Higher Education (HE) has been substantially transformed from a small number of Masters Courses in forensic science delivered by a small number of universities, to a plethora of undergraduate courses now available throughout the United Kingdom. This rapid expansion of forensic science courses has been openly criticised and debated and it is incumbent upon the university to not only focus on education but also to provide graduates with transferrable skills making them more employment ready. As a consequence HE establishments must be cognisant of and reactive to changes within any associated industry and respond to changes accordingly. However, have the universities delivering forensic science courses fully responded to these recent and unprecedented developments in the history of forensic science within the United Kingdom? This paper will consider the most recent changes to the forensic science marketplace and their ramifications for forensic science education within the HE sector. Challenges which have resulted from the changes will be highlighted and the educational impact on forensic science courses throughout the UK and their future will be evaluated in chronological order
- …