971 research outputs found

    Voltage-Mode Highpass, Bandpass, Lowpass and Notch Biquadratic Filters Using Single DDCC

    Get PDF
    A new voltage-mode multifunction biquadratic filter using one differential difference current conveyor (DDCC), two grounded capacitors and three resistors is presented. The proposed circuit offers the following attractive advantages: realizing highpass, bandpass, lowpass and notch filter functions, simultaneously, from the same circuit configuration; employing grounded capacitors, which is ideal for integration and simpler circuit configuration

    DCCII-Based Novel Lossless Grounded Inductance Simulators With No Element Matching Constrains

    Get PDF
    In 1996, the differential current conveyor (DCCII) was introduced as a versatile active element with current differencing capability. Therefore, in this study, the usefulness of the DCCII is shown on six novel lossless grounded inductance simulator circuits. Proposed circuits simultaneously employ minimum number of elements, i.e. single DCCII, one capacitor, and two resistors. No passive element matching restriction is needed and all solutions are electronically tunable in case that one of resistors is replaced by MOSFET-based voltage-controlled resistor. The internal structure of the active element has been implemented using the TSMC 0.25 um SCN025 CMOS process BSIM3v3.1 parameters. Firstly, the performance of the selected inductor simulator is evaluated and subsequently verified in the design of 5th-order high-pass ladder and 2nd-order frequency filters. In addition, experimental results using commercially available AD844/ADs are given to verify the theoretical analysis and SPICE simulations

    High Input Impedance Voltage-Mode Universal Biquadratic Filters With Three Inputs Using Three CCs and Grounding Capacitors

    Get PDF
    Two current conveyors (CCs) based high input impedance voltage-mode universal biquadratic filters each with three input terminals and one output terminal are presented. The first circuit is composed of three differential voltage current conveyors (DVCCs), two grounded capacitors and four resistors. The second circuit is composed of two DVCCs, one differential difference current conveyor (DDCC), two grounded capacitors and four grounded resistors. The proposed circuits can realize all the standard filter functions, namely, lowpass, bandpass, highpass, notch and allpass filters by the selections of different input voltage terminals. The proposed circuits offer the features of high input impedance, using only grounded capacitors and low active and passive sensitivities. Moreover, the x ports of the DVCCs (or DDCC) in the proposed circuits are connected directly to resistors. This design offers the feature of a direct incorporation of the parasitic resistance at the x terminal of the DVCC (DDCC), Rx, as a part of the main resistance

    Single ICCII Sinusoidal Oscillators Employing Grounded Capacitors

    Get PDF
    Two inverting second-generation current conveyors (ICCII) based sinusoidal oscillators are presented. The first sinusoidal oscillator is composed of one ICCII, two grounded capacitors and two resistors. The oscillation condition and oscillation frequency can be orthogonally controllable. The second sinusoidal oscillator is composed of one ICCII, two grounded capacitors and three resistors. The oscillation condition and oscillation frequency can be independently controllable through different resistors

    Bending-wave Instability of a Vortex Ring in a Trapped Bose-Einstein Condensate

    Full text link
    Based on a velocity formula derived by matched asymptotic expansion, we investigate the dynamics of a circular vortex ring in an axisymmetric Bose-Einstein condensate in the Thomas-Fermi limit. The trajectory for an axisymmetrically placed and oriented vortex ring is entirely determined, revealing that the vortex ring generally precesses in condensate. The linear instability due to bending waves is investigated both numerically and analytically. General stability boundaries for various perturbed wavenumbers are computed. In particular, the excitation spectrum and the absolutely stable region for the static ring are analytically determined.Comment: 4 pages, 4 figure

    Selective interlayer ferromagnetic coupling between the Cu spins in YBa2_2 Cu3_3 O7x_{7-x} grown on top of La0.7_{0.7} Ca0.3_{0.3} MnO3_3

    Full text link
    Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa2_2 Cu3_3 O7x_{7-x} (YBCO) superconductor when it is grown on top of ferromagnetic La0.7_{0.7} Ca0.3_{0.3} MnO3_3 (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO_2but not with La0.7_{0.7} Ca0.3_{0.3} interfacial termination. Such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO2_2 plane at the La0.7_{0.7} Ca0.3_{0.3} and MnO2_2 terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems.Comment: Please note the change of the title. Text might be slightly different from the published versio

    The TSC-mTOR pathway regulates macrophage polarization

    Get PDF
    Macrophages are able to polarize to proinflammatory M1 or alternative M2 states with distinct phenotypes and physiological functions. How metabolic status regulates macrophage polarization remains not well understood, and here we examine the role of mTOR (Mechanistic Target of Rapamycin), a central metabolic pathway that couples nutrient sensing to regulation of metabolic processes. Using a mouse model in which myeloid lineage specific deletion of Tsc1 (Tsc1Δ/Δ) leads to constitutive mTOR Complex 1 (mTORC1) activation, we find that Tsc1Δ/Δ macrophages are refractory to IL-4 induced M2 polarization, but produce increased inflammatory responses to proinflammatory stimuli. Moreover, mTORC1-mediated downregulation of Akt signaling critically contributes to defective polarization. These findings highlight a key role for the mTOR pathway in regulating macrophage polarization, and suggest how nutrient sensing and metabolic status could be “hard-wired” to control of macrophage function, with broad implications for regulation of Type 2 immunity, inflammation, and allergy
    corecore