581 research outputs found

    Search for the decay J/ψ→γ+invisibleJ/\psi\to\gamma + \rm {invisible}

    Full text link
    We search for J/ψJ/\psi radiative decays into a weakly interacting neutral particle, namely an invisible particle, using the J/ψJ/\psi produced through the process ψ(3686)→π+π−J/ψ\psi(3686)\to\pi^+\pi^-J/\psi in a data sample of (448.1±2.9)×106(448.1\pm2.9)\times 10^6 ψ(3686)\psi(3686) decays collected by the BESIII detector at BEPCII. No significant signal is observed. Using a modified frequentist method, upper limits on the branching fractions are set under different assumptions of invisible particle masses up to 1.2  GeV/c2\mathrm{\ Ge\kern -0.1em V}/c^2. The upper limit corresponding to an invisible particle with zero mass is 7.0×10−7\times 10^{-7} at the 90\% confidence level

    Observation of ηc→ωω\eta_c\to\omega\omega in J/ψ→γωωJ/\psi\to\gamma\omega\omega

    Get PDF
    Using a sample of (1310.6±7.0)×106(1310.6\pm7.0)\times10^6 J/ψJ/\psi events recorded with the BESIII detector at the symmetric electron positron collider BEPCII, we report the observation of the decay of the (11S0)(1^1 S_0) charmonium state ηc\eta_c into a pair of ω\omega mesons in the process J/ψ→γωωJ/\psi\to\gamma\omega\omega. The branching fraction is measured for the first time to be B(ηc→ωω)=(2.88±0.10±0.46±0.68)×10−3\mathcal{B}(\eta_c\to\omega\omega)= (2.88\pm0.10\pm0.46\pm0.68)\times10^{-3}, where the first uncertainty is statistical, the second systematic and the third is from the uncertainty of B(J/ψ→γηc)\mathcal{B}(J/\psi\to\gamma\eta_c). The mass and width of the ηc\eta_c are determined as M=(2985.9±0.7±2.1) M=(2985.9\pm0.7\pm2.1)\,MeV/c2c^2 and Γ=(33.8±1.6±4.1) \Gamma=(33.8\pm1.6\pm4.1)\,MeV.Comment: 13 pages, 6 figure

    Measurement of proton electromagnetic form factors in e+e−→ppˉe^+e^- \to p\bar{p} in the energy region 2.00-3.08 GeV

    Full text link
    The process of e+e−→ppˉe^+e^- \rightarrow p\bar{p} is studied at 22 center-of-mass energy points (s\sqrt{s}) from 2.00 to 3.08 GeV, exploiting 688.5~pb−1^{-1} of data collected with the BESIII detector operating at the BEPCII collider. The Born cross section~(σppˉ\sigma_{p\bar{p}}) of e+e−→ppˉe^+e^- \rightarrow p\bar{p} is measured with the energy-scan technique and it is found to be consistent with previously published data, but with much improved accuracy. In addition, the electromagnetic form-factor ratio (∣GE/GM∣|G_{E}/G_{M}|) and the value of the effective (∣Geff∣|G_{\rm{eff}}|), electric (∣GE∣|G_E|) and magnetic (∣GM∣|G_M|) form factors are measured by studying the helicity angle of the proton at 16 center-of-mass energy points. ∣GE/GM∣|G_{E}/G_{M}| and ∣GM∣|G_M| are determined with high accuracy, providing uncertainties comparable to data in the space-like region, and ∣GE∣|G_E| is measured for the first time. We reach unprecedented accuracy, and precision results in the time-like region provide information to improve our understanding of the proton inner structure and to test theoretical models which depend on non-perturbative Quantum Chromodynamics

    Precise Measurements of Branching Fractions for Ds+D_s^+ Meson Decays to Two Pseudoscalar Mesons

    Get PDF
    We measure the branching fractions for seven Ds+D_{s}^{+} two-body decays to pseudo-scalar mesons, by analyzing data collected at s=4.178∼4.226\sqrt{s}=4.178\sim4.226 GeV with the BESIII detector at the BEPCII collider. The branching fractions are determined to be B(Ds+→K+η′)=(2.68±0.17±0.17±0.08)×10−3\mathcal{B}(D_s^+\to K^+\eta^{\prime})=(2.68\pm0.17\pm0.17\pm0.08)\times10^{-3}, B(Ds+→η′π+)=(37.8±0.4±2.1±1.2)×10−3\mathcal{B}(D_s^+\to\eta^{\prime}\pi^+)=(37.8\pm0.4\pm2.1\pm1.2)\times10^{-3}, B(Ds+→K+η)=(1.62±0.10±0.03±0.05)×10−3\mathcal{B}(D_s^+\to K^+\eta)=(1.62\pm0.10\pm0.03\pm0.05)\times10^{-3}, B(Ds+→ηπ+)=(17.41±0.18±0.27±0.54)×10−3\mathcal{B}(D_s^+\to\eta\pi^+)=(17.41\pm0.18\pm0.27\pm0.54)\times10^{-3}, B(Ds+→K+KS0)=(15.02±0.10±0.27±0.47)×10−3\mathcal{B}(D_s^+\to K^+K_S^0)=(15.02\pm0.10\pm0.27\pm0.47)\times10^{-3}, B(Ds+→KS0π+)=(1.109±0.034±0.023±0.035)×10−3\mathcal{B}(D_s^+\to K_S^0\pi^+)=(1.109\pm0.034\pm0.023\pm0.035)\times10^{-3}, B(Ds+→K+π0)=(0.748±0.049±0.018±0.023)×10−3\mathcal{B}(D_s^+\to K^+\pi^0)=(0.748\pm0.049\pm0.018\pm0.023)\times10^{-3}, where the first uncertainties are statistical, the second are systematic, and the third are from external input branching fraction of the normalization mode Ds+→K+K−π+D_s^+\to K^+K^-\pi^+. Precision of our measurements is significantly improved compared with that of the current world average values

    First observations of hc→h_c \to hadrons

    Get PDF
    Based on (4.48±0.03)×108(4.48 \pm 0.03) \times 10^{8} ψ(3686)\psi(3686) events collected with the BESIII detector, five hch_c hadronic decays are searched for via process ψ(3686)→π0hc\psi(3686) \to \pi^0 h_c. Three of them, hc→ppˉπ+π−h_c \to p \bar{p} \pi^+ \pi^-, π+π−π0\pi^+ \pi^- \pi^0, and 2(π+π−)π02(\pi^+ \pi^-) \pi^0 are observed for the first time, with statistical significances of 7.4σ\sigma, 4.9σ4.9\sigma, and 9.1σ\sigma, and branching fractions of (2.89±0.32±0.55)×10−3(2.89\pm0.32\pm0.55)\times10^{-3}, (1.60±0.40±0.32)×10−3(1.60\pm0.40\pm0.32)\times10^{-3}, and (7.44±0.94±1.56)×10−3(7.44\pm0.94\pm1.56)\times10^{-3}, respectively, where the first uncertainties are statistical and the second systematic. No significant signal is observed for the other two decay modes, and the corresponding upper limits of the branching fractions are determined to be B(hc→3(π+π−)π0)<8.7×10−3B(h_c \to 3(\pi^+ \pi^-) \pi^0)<8.7\times10^{-3} and B(hc→K+K−π+π−)<5.8×10−4B(h_c \to K^+ K^- \pi^+ \pi^-)<5.8\times10^{-4} at 90% confidence level.Comment: 17 pages, 16 figure

    Measurements of Weak Decay Asymmetries of Λc+→pKS0\Lambda_c^+\to pK_S^0, Λπ+\Lambda\pi^+, Σ+π0\Sigma^+\pi^0, and Σ0π+\Sigma^0\pi^+

    Get PDF
    Using e+e−→Λc+Λˉc−e^+e^-\to\Lambda_c^+\bar\Lambda_c^- production from a 567 pb−1^{-1} data sample collected by BESIII at 4.6 GeV, a full angular analysis is carried out simultaneously on the four decay modes of Λc+→pKS0\Lambda_c^+\to pK_S^0, Λπ+\Lambda \pi^+, Σ+π0\Sigma^+\pi^0, and Σ0π+\Sigma^0\pi^+. For the first time, the Λc+\Lambda_c^+ transverse polarization is studied in unpolarized e+e−e^+e^- collisions, where a non-zero effect is observed with a statistical significance of 2.1σ\sigma. The decay asymmetry parameters of the Λc+\Lambda_c^+ weak hadronic decays into pKS0pK_S^0, Λπ+\Lambda\pi^+, Σ+π0\Sigma^+\pi^0 and Σ0π+\Sigma^0\pi^+ are measured to be 0.18±0.43(stat)±0.14(syst)0.18\pm0.43(\rm{stat})\pm0.14(\rm{syst}), −0.80±0.11(stat)±0.02(syst)-0.80\pm0.11(\rm{stat})\pm0.02(\rm{syst}), −0.57±0.10(stat)±0.07(syst)-0.57\pm0.10(\rm{stat})\pm0.07(\rm{syst}), and −0.73±0.17(stat)±0.07(syst)-0.73\pm0.17(\rm{stat})\pm0.07(\rm{syst}), respectively. In comparison with previous results, the measurements for the Λπ+\Lambda\pi^+ and Σ+π0\Sigma^+\pi^0 modes are consistent but with improved precision, while the parameters for the pKS0pK_S^0 and Σ0π+\Sigma^0\pi^+ modes are measured for the first time

    Track-based alignment for the BESIII CGEM detector in the cosmic-ray test

    Full text link
    The Beijing Electron Spectrometer III (BESIII) is a multipurpose detector operating on the Beijing Electron Positron Collider II (BEPCII). After more than ten year's operation, the efficiency of the inner layers of the Main Drift Chamber (MDC) decreased significantly. To solve this issue, the BESIII collaboration is planning to replace the inner part of the MDC with three layers of Cylindrical triple-Gas Electron Multipliers (CGEM). The new features of the CGEM detector will improve the spatial resolution to 130 μ\mum. To meet this goal, a careful calibration of the detector is necessary to fully exploit the potential of the CGEM detector. In all the calibrations, the detector alignment plays an important role to improve the detector precision. The track-based alignment for the CGEM detector with the Millepede algorithm is implemented to reduce the uncertainties of the hit position measurement. Using the cosmic-ray data taken in 2020 with the two layers setup, the displacement of the outer layer with respect to the inner layer is determined by a simultaneous fit applied to more than 160000 tracks. A good alignment precision has been achieved that guarantees the design request could be satisfied in the future. A further alignment will be performed using the combined information of tracks from cosmic-ray and collisions after the CGEM is installed into the BESIII detector

    Measurement of the J/ψ\psi photoproduction cross section over the full near-threshold kinematic region

    Full text link
    We report the total and differential cross sections for J/ψJ/\psi photoproduction with the large acceptance GlueX spectrometer for photon beam energies from the threshold at 8.2~GeV up to 11.44~GeV and over the full kinematic range of momentum transfer squared, tt. Such coverage facilitates the extrapolation of the differential cross sections to the forward (t=0t = 0) point beyond the physical region. The forward cross section is used by many theoretical models and plays an important role in understanding J/ψJ/\psi photoproduction and its relation to the J/ψ−J/\psi-proton interaction. These measurements of J/ψJ/\psi photoproduction near threshold are also crucial inputs to theoretical models that are used to study important aspects of the gluon structure of the proton, such as the gluon Generalized Parton Distribution (GPD) of the proton, the mass radius of the proton, and the trace anomaly contribution to the proton mass. We observe possible structures in the total cross section energy dependence and find evidence for contributions beyond gluon exchange in the differential cross section close to threshold, both of which are consistent with contributions from open-charm intermediate states.Comment: 15 pages 18 figure

    Amplitude analysis of Ds+→π+π−π+D_s^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}

    Full text link
    Utilizing the data set corresponding to an integrated luminosity of 3.193.19 fb−1^{-1} collected by the BESIII detector at a center-of-mass energy of 4.178 GeV, we perform an amplitude analysis of the Ds+→π+π−π+D_s^+\to\pi^+\pi^-\pi^+ decay. The sample contains 13,797 candidates with a signal purity of ∼\sim80%. The amplitude and phase of the contributing ππ\pi\pi S{\cal S} wave are measured based on a quasi-model-independent approach, along with the amplitudes and phases of the P{\cal P} and D{\cal D} waves parametrized by Breit-Wigner models. The fit fractions of different intermediate decay channels are also reported.Comment: 14 pages, 6 figure

    Search for New Hadronic Decays of hch_c and Observation of hc→K+K−π+π−π0h_c\rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}

    Full text link
    Ten hadronic final states of the hch_c decays are investigated via the process ψ(3686)→π0hc\psi(3686)\rightarrow \pi^0 h_c, using a data sample of (448.1±2.9)×106(448.1 \pm 2.9) \times 10^6 ψ(3686)\psi(3686) events collected with the BESIII detector. The decay channel hc→K+K−π+π−π0h_c\rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0} is observed for the first time with a significance of 6.0σ6.0 \sigma. The corresponding branching fraction is determined to be B(hc→K+K−π+π−π0)=(3.3±0.6±0.6)×10−3\mathcal{B}(h_c\rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}) =(3.3 \pm 0.6 \pm 0.6)\times 10^{-3} (the first uncertainty is statistical and the second systematical). Evidence for the decays hc→π+π−π0ηh_c\rightarrow \pi^{+} \pi^{-} \pi^{0} \eta and hc→KS0K±π∓π+π−h_c\rightarrow K^{0}_{S}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-} is found with a significance of 3.6σ3.6 \sigma and 3.8σ3.8 \sigma, respectively. The corresponding branching fractions (and upper limits) are obtained to be B(hc→π+π−π0η)=(7.2±1.8±1.3)×10−3\mathcal{B}(h_c\rightarrow \pi^{+} \pi^{-} \pi^{0} \eta ) =(7.2 \pm 1.8 \pm 1.3)\times 10^{-3} (<1.8×10−2)(< 1.8 \times 10^{-2}) and B(hc→KS0K±π∓π+π−)=(2.8±0.9±0.5)×10−3\mathcal{B}(h_c\rightarrow K^{0}_{S}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}) =(2.8 \pm 0.9 \pm 0.5)\times 10^{-3} (<4.7×10−3)(<4.7\times 10^{-3}). Upper limits on the branching fractions for the final states hc→K+K−π0h_c \rightarrow K^{+}K^{-}\pi^{0}, K+K−ηK^{+}K^{-}\eta, K+K−π+π−ηK^{+}K^{-}\pi^{+}\pi^{-}\eta, 2(K+K−)π02(K^{+}K^{-})\pi^{0}, K+K−π0ηK^{+}K^{-}\pi^{0}\eta, KS0K±π∓K^{0}_{S}K^{\pm}\pi^{\mp}, and ppˉπ0π0p\bar{p}\pi^{0}\pi^{0} are determined at a confidence level of 90\%.Comment: 10 pages, 2 figure
    • …
    corecore