5,313 research outputs found
Amortised resource analysis with separation logic
Type-based amortised resource analysis following Hofmann and Jostāwhere resources are associated with individual elements of data structures and doled out to the programmer under a linear typing disciplineāhave been successful in providing concrete resource bounds for functional programs, with good support for inference. In this work we translate the idea of amortised resource analysis to imperative languages by embedding a logic of resources, based on Bunched Implications, within Separation Logic. The Separation Logic component allows us to assert the presence and shape of mutable data structures on the heap, while the resource component allows us to state the resources associated with each member of the structure. We present the logic on a small imperative language with procedures and mutable heap, based on Java bytecode. We have formalised the logic within the Coq proof assistant and extracted a certified verification condition generator. We demonstrate the logic on some examples, including proving termination of in-place list reversal on lists with cyclic tails
Quantum-coherent dynamics in photosynthetic charge separation revealed by wavelet analysis
Experimental/theoretical evidence for sustained vibration-assisted electronic
(vibronic) coherence in the Photosystem II Reaction Center (PSII RC) indicates
that photosynthetic solar-energy conversion might be optimized through the
interplay of electronic and vibrational quantum dynamics. This evidence has
been obtained by investigating the primary charge separation process in the
PSII RC by two-dimensional electronic spectroscopy (2DES) and Redfield modeling
of the experimental data. However, while conventional Fourier transform
analysis of the 2DES data allows oscillatory signatures of vibronic coherence
to be identified in the frequency domain in the form of static 2D frequency
maps, the real-time evolution of the coherences is lost. Here we apply for the
first time wavelet analysis to the PSII RC 2DES data to obtain time-resolved 2D
frequency maps. These maps allow us to demonstrate that i) coherence between
the excitons initiating the two different charge separation pathways is active
for more than 500 fs, and ii) coherence between exciton and charge-transfer
states, the reactant and product of the charge separation reaction,
respectively, is active for at least 1 ps. These findings imply that the PSII
RC employs coherence i) to sample competing electron transfer pathways, and ii)
to perform directed, ultrafast and efficient electron transfer.Comment: Scientific reports 201
On the construction of high-order force gradient algorithms for integration of motion in classical and quantum systems
A consequent approach is proposed to construct symplectic force-gradient
algorithms of arbitrarily high orders in the time step for precise integration
of motion in classical and quantum mechanics simulations. Within this approach
the basic algorithms are first derived up to the eighth order by direct
decompositions of exponential propagators and further collected using an
advanced composition scheme to obtain the algorithms of higher orders. Contrary
to the scheme by Chin and Kidwell [Phys. Rev. E 62, 8746 (2000)], where
high-order algorithms are introduced by standard iterations of a force-gradient
integrator of order four, the present method allows to reduce the total number
of expensive force and its gradient evaluations to a minimum. At the same time,
the precision of the integration increases significantly, especially with
increasing the order of the generated schemes. The algorithms are tested in
molecular dynamics and celestial mechanics simulations. It is shown, in
particular, that the efficiency of the new fourth-order-based algorithms is
better approximately in factors 5 to 1000 for orders 4 to 12, respectively. The
results corresponding to sixth- and eighth-order-based composition schemes are
also presented up to the sixteenth order. For orders 14 and 16, such highly
precise schemes, at considerably smaller computational costs, allow to reduce
unphysical deviations in the total energy up in 100 000 times with respect to
those of the standard fourth-order-based iteration approach.Comment: 23 pages, 2 figures; submitted to Phys. Rev.
Quantum Perfect-Fluid Kaluza-Klein Cosmology
The perfect fluid cosmology in the 1+d+D dimensional Kaluza-Klein spacetimes
for an arbitrary barotropic equation of state is quantized by using
the Schutz's variational formalism. We make efforts in the mathematics to solve
the problems in two cases. For the first case of the stiff fluid we
exactly solve the Wheeler-DeWitt equation when the space is flat. After the
superposition of the solutions we analyze the Bohmian trajectories of the
final-stage wave-packet functions and show that the flat spaces and the
compact spaces will eventually evolve into finite scale functions. For the
second case of , we use the approximated wavefunction in the
Wheeler-DeWitt equation to find the analytic forms of the final-stage
wave-packet functions. After analyzing the Bohmian trajectories we show that
the flat spaces will be expanding forever while the scale function of the
contracting spaces would not become zero within finite time. Our
investigations indicate that the quantum effect in the quantum perfect-fluid
cosmology could prevent the extra compact spaces in the Kaluza-Klein theory
from collapsing into a singularity or that the "crack-of-doom" singularity of
the extra compact dimensions is made to occur at .Comment: Latex 18 pages, add section 2 to introduce the quantization of
perfect flui
A new broken U(1)-symmetry in extreme type-II superconductors
A phase transition within the molten phase of the Abrikosov vortex system
without disorder in extreme type-II superconductors is found via large-scale
Monte-Carlo simulations. It involves breaking a U(1)-symmetry, and has a
zero-field counterpart, unlike vortex lattice melting. Its hallmark is the loss
of number-conservation of connected vortex paths threading the entire system
{\it in any direction}, driving the vortex line tension to zero. This tension
plays the role of a generalized ``stiffness'' of the vortex liquid, and serves
as a probe of the loss of order at the transition, where a weak specific heat
anomaly is found.Comment: 5 pages, 3 figure
High-Contrast Interference in a Thermal Cloud of Atoms
The coherence properties of a gas of bosonic atoms above the BEC transition
temperature were studied. Bragg diffraction was used to create two spatially
separated wave packets, which interfere during expansion. Given sufficient
expansion time, high fringe contrast could be observed in a cloud of arbitrary
temperature. Fringe visibility greater than 90% was observed, which decreased
with increasing temperature, in agreement with a simple model. When the sample
was "filtered" in momentum space using long, velocity-selective Bragg pulses,
the contrast was significantly enhanced in contrast to predictions
A Forward-Design Approach to Increase the Production of Poly-3-Hydroxybutyrate in Genetically Engineered Escherichia coli
Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB)
Unzipping of DNA with correlated base-sequence
We consider force-induced unzipping transition for a heterogeneous DNA model
with a correlated base-sequence. Both finite-range and long-range correlated
situations are considered. It is shown that finite-range correlations increase
stability of DNA with respect to the external unzipping force. Due to
long-range correlations the number of unzipped base-pairs displays two widely
different scenarios depending on the details of the base-sequence: either there
is no unzipping phase-transition at all, or the transition is realized via a
sequence of jumps with magnitude comparable to the size of the system. Both
scenarios are different from the behavior of the average number of unzipped
base-pairs (non-self-averaging). The results can be relevant for explaining the
biological purpose of correlated structures in DNA.Comment: 22 pages, revtex4, 14 eps figures; reprinted in the June 15, 2004
issue of Virtual Journal of Biological Physics Researc
On Automated Lemma Generation for Separation Logic with Inductive Definitions
Separation Logic with inductive definitions is a well-known approach for
deductive verification of programs that manipulate dynamic data structures.
Deciding verification conditions in this context is usually based on
user-provided lemmas relating the inductive definitions. We propose a novel
approach for generating these lemmas automatically which is based on simple
syntactic criteria and deterministic strategies for applying them. Our approach
focuses on iterative programs, although it can be applied to recursive programs
as well, and specifications that describe not only the shape of the data
structures, but also their content or their size. Empirically, we find that our
approach is powerful enough to deal with sophisticated benchmarks, e.g.,
iterative procedures for searching, inserting, or deleting elements in sorted
lists, binary search tress, red-black trees, and AVL trees, in a very efficient
way
- ā¦