8,461 research outputs found
Passive propellant system
The system utilizes a spherical tank structure A separated into two equal volume compartments by a flat bulkhead B. Each compartment has four similar gallery channel legs located in the principal vehicle axes, ensuring that bulk propellant will contact at least one gallery leg during vehicle maneuvers. The forward compartment gallery channel legs collect propellant and feed it into the aft compartment through communication screens which protrude into the aft compartment. The propellant is then collected by the screened gallery channels in the aft compartment and supplied to the propellant outlet. The invention resides in the independent gallery assembly and screen structure by means of which propellant flow from forward to aft compartments is maintained. Liquid surface tension of the liquid on the screens is used to control liquid flow. The system provides gas-free propellants in low or zero-g environments regardless of axial accelerations and propellant orientation in bulk regions of the vessel
Collective Modes of Tri-Nuclear Molecules
A geometrical model for tri-nuclear molecules is presented. An analytical
solution is obtained provided the nuclei, which are taken to be prolately
deformed, are connected in line to each other. Furthermore, the tri-nuclear
molecule is composed of two heavy and one light cluster, the later sandwiched
between the two heavy clusters. A basis is constructed in which Hamiltonians of
more general configurations can be diagonalized. In the calculation of the
interaction between the clusters higher multipole deformations are taken into
account, including the hexadecupole one. A repulsive nuclear core is introduced
in the potential in order to insure a quasi-stable configuration of the system.
The model is applied to three nuclear molecules, namely Sr + Be +
Ba, Mo + Be + Te and Ru + Be +
Sn.Comment: 24 pages, 9 figure
Mean-Field Treatment of the Many-Body Fokker-Planck Equation
We review some properties of the stationary states of the Fokker - Planck
equation for N interacting particles within a mean field approximation, which
yields a non-linear integrodifferential equation for the particle density.
Analytical results show that for attractive long range potentials the steady
state is always a precipitate containing one cluster of small size. For
arbitrary potential, linear stability analysis allows to state the conditions
under which the uniform equilibrium state is unstable against small
perturbations and, via the Einstein relation, to define a critical temperature
Tc separating two phases, uniform and precipitate. The corresponding phase
diagram turns out to be strongly dependent on the pair-potential. In addition,
numerical calculations reveal that the transition is hysteretic. We finally
discuss the dynamics of relaxation for the uniform state suddenly cooled below
Tc.Comment: 13 pages, 8 figure
Spin dynamics and magnetic interactions of Mn dopants in the topological insulator BiTe
The magnetic and electronic properties of the magnetically doped topological
insulator BiMnTe were studied using electron spin
resonance (ESR) and measurements of static magnetization and electrical
transport. The investigated high quality single crystals of BiMnTe show a ferromagnetic phase transition for
at K. The Hall measurements reveal a p-type finite
charge-carrier density. Measurements of the temperature dependence of the ESR
signal of Mn dopants for different orientations of the external magnetic field
give evidence that the localized Mn moments interact with the mobile charge
carriers leading to a Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling
between the Mn spins of order 2-3 meV. Furthermore, ESR reveals a
low-dimensional character of magnetic correlations that persist far above the
ferromagnetic ordering temperature
High Energy Neutrinos: Sources and Fluxes
We discuss briefly the potential sources of high energy astrophysical
neutrinos and show estimates of the neutrino fluxes that they can produce. A
special attention is paid to the connection between the highest energy cosmic
rays and astrophysical neutrinos.Comment: 7 pages, 2 figures, submitted to the Proceedings of TAUP 2005
workshop, corrected left panel of figure
Staggered Pairing Phenomenology for UPd_2Al_3 and UNi_2Al_3
We apply the staggered-pairing Ginzburg-Landau phenomenology to describe
superconductivity in UPd_2Al_3 and UNi_2Al_3. The phenomenology was applied
successfully to UPt_3 so it explains why these materials have qualitatively
different superconducting phase diagrams although they have the same
point-group symmetry. UPd_2Al_3 and UNi_2Al_3 have a two-component
superconducting order parameter transforming as an H-point irreducible
representation of the space group. Staggered superconductivity can induce
charge-density waves characterized by new Bragg peaks suggesting experimental
tests of the phenomenology.Comment: 4 pages, REVTeX, 2 Postscript figure
Shot-noise-limited spin measurements in a pulsed molecular beam
Heavy diatomic molecules have been identified as good candidates for use in
electron electric dipole moment (eEDM) searches. Suitable molecular species can
be produced in pulsed beams, but with a total flux and/or temporal evolution
that varies significantly from pulse to pulse. These variations can degrade the
experimental sensitivity to changes in spin precession phase of an electri-
cally polarized state, which is the observable of interest for an eEDM
measurement. We present two methods for measurement of the phase that provide
immunity to beam temporal variations, and make it possible to reach
shot-noise-limited sensitivity. Each method employs rapid projection of the
spin state onto both components of an orthonormal basis. We demonstrate both
methods using the eEDM-sensitive H state of thorium monoxide (ThO), and use one
of them to measure the magnetic moment of this state with increased accuracy
relative to previous determinations.Comment: 12 pages, 6 figure
Status of neutrino astronomy
Astrophysical neutrinos can be produced in proton interactions of charged
cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in
balloon, satellite and air shower experiments every day, from below 1e9 eV up
to macroscopic energies of 1e21 eV. The observation of different photon fields
has been done ever since, today with detections ranging from radio wavelengths
up to very high-energy photons in the TeV range. The leading question for
neutrino astronomers is now which sources provide a combination of efficient
proton acceleration with sufficiently high photon fields or baryonic targets at
the same time in order to produce a neutrino flux that is high enough to exceed
the background of atmospheric neutrinos. There are only two confirmed
astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit
and emitted neutrinos at MeV energies. The aim of large underground Cherenkov
telescopes like IceCube and KM3NeT is the detection of neutrinos at energies
above 100 GeV. In this paper, recent developments of neutrino flux modeling for
the most promising extragalactic sources, gamma ray bursts and active galactic
nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4
figures, 1 tabl
Status of neutrino astronomy
Astrophysical neutrinos can be produced in proton interactions of charged
cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in
balloon, satellite and air shower experiments every day, from below 1e9 eV up
to macroscopic energies of 1e21 eV. The observation of different photon fields
has been done ever since, today with detections ranging from radio wavelengths
up to very high-energy photons in the TeV range. The leading question for
neutrino astronomers is now which sources provide a combination of efficient
proton acceleration with sufficiently high photon fields or baryonic targets at
the same time in order to produce a neutrino flux that is high enough to exceed
the background of atmospheric neutrinos. There are only two confirmed
astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit
and emitted neutrinos at MeV energies. The aim of large underground Cherenkov
telescopes like IceCube and KM3NeT is the detection of neutrinos at energies
above 100 GeV. In this paper, recent developments of neutrino flux modeling for
the most promising extragalactic sources, gamma ray bursts and active galactic
nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4
figures, 1 tabl
- …