6,439 research outputs found

    Modulation of the dephasing time for a magnetoplasma in a quantum well

    Full text link
    We investigate the femtosecond kinetics of optically excited 2D magneto-plasma. We calculate the femtosecond dephasing and relaxation kinetics of the laser pulse excited magneto-plasma due to bare Coulomb potential scattering, because screening is under these conditions of minor importance. By taking into account four Landau subbands in both the conduction band and the valence band, we are now able to extend our earlier study [Phys. Rev. B {\bf 58}, 1998,in print (see also cond-mat/9808073] to lower magnetic fields. We can also fix the magnetic field and change the detuning to further investigate the carrier density-dependence of the dephasing time. For both cases, we predict strong modulation in the dephasing time.Comment: RevTex, 3 figures, to be published in Solid. Stat. Commu

    Excitation Induced Dephasing in Semiconductor Quantum Dots

    Full text link
    A quantum kinetic theory is used to compute excitation induced dephasing in semiconductor quantum dots due to the Coulomb interaction with a continuum of states, such as a quantum well or a wetting layer. It is shown that a frequency dependent broadening together with nonlinear resonance shifts are needed for a microscopic explanation of the excitation induced dephasing in such a system, and that excitation induced dephasing for a quantum-dot excitonic resonance is different from quantum-well and bulk excitons.Comment: 6 pages, 4 figures. Extensively revised text, two figures change

    Bimodal Counting Statistics in Single Electron Tunneling through a Quantum Dot

    Get PDF
    We explore the full counting statistics of single electron tunneling through a quantum dot using a quantum point contact as non-invasive high bandwidth charge detector. The distribution of counted tunneling events is measured as a function of gate and source-drain-voltage for several consecutive electron numbers on the quantum dot. For certain configurations we observe super-Poissonian statistics for bias voltages at which excited states become accessible. The associated counting distributions interestingly show a bimodal characteristic. Analyzing the time dependence of the number of electron counts we relate this to a slow switching between different electron configurations on the quantum dot

    Optical response of graphene under intense terahertz fields

    Full text link
    Optical responses of graphene in the presence of intense circularly and linearly polarized terahertz fields are investigated based on the Floquet theory. We examine the energy spectrum and density of states. It is found that gaps open in the quasi-energy spectrum due to the single-photon/multi-photon resonances. These quasi-energy gaps are pronounced at small momentum, but decrease dramatically with the increase of momentum and finally tend to be closed when the momentum is large enough. Due to the contribution from the states at large momentum, the gaps in the density of states are effectively closed, in contrast to the prediction in the previous work by Oka and Aoki [Phys. Rev. B {\bf 79}, 081406(R) (2009)]. We also investigate the optical conductivity for different field strengths and Fermi energies, and show the main features of the dynamical Franz-Keldysh effect in graphene. It is discovered that the optical conductivity exhibits a multi-step-like structure due to the sideband-modulated optical transition. It is also shown that dips appear at frequencies being the integer numbers of the applied terahertz field frequency in the case of low Fermi energy, originating from the quasi-energy gaps at small momentums. Moreover, under a circularly polarized terahertz field, we predict peaks in the middle of the "steps" and peaks induced by the contribution from the states around zero momentum in the optical conductivity.Comment: 15 pages, 10 figure

    Competition between Kondo screening and quantum Hall edge reconstruction

    Get PDF
    We report on a Kondo correlated quantum dot connected to two-dimensional leads where we demonstrate the renormalization of the g-factor in the pure Zeeman case i.e, for magnetic fields parallel to the plane of the quantum dot. For the same system we study the influence of orbital effects by investigating the quantum Hall regime i.e. a perpendicular magnetic field is applied. In this case an unusual behaviour of the suppression of the Kondo effect and of the split zero-bias anomaly is observed. The splitting decreases with magnetic field and shows discontinuous changes which are attributed to the intricate interplay between Kondo screening and the quantum Hall edge structure originating from electrostatic screening. This edge structure made up of compressible and incompressible stripes strongly affects the Kondo temperature of the quantum dot and thereby influences the renormalized g-factor

    Photon heat transport in low-dimensional nanostructures

    Full text link
    At low temperatures when the phonon modes are effectively frozen, photon transport is the dominating mechanism of thermal relaxation in metallic systems. Starting from a microscopic many-body Hamiltonian, we develop a nonequilibrium Green's function method to study energy transport by photons in nanostructures. A formally exact expression for the energy current between a metallic island and a one-dimensional electromagnetic field is obtained. From this expression we derive the quantized thermal conductance as well as show how the results can be generalized to nonequilibrium situations. Generally, the frequency-dependent current noise of the island electrons determines the energy transfer rate.Comment: 4 pages, 3 Fig

    Relaxation properties of the quantum kinetics of carrier-LO-phonon interaction in quantum wells and quantum dots

    Full text link
    The time evolution of optically excited carriers in semiconductor quantum wells and quantum dots is analyzed for their interaction with LO-phonons. Both the full two-time Green's function formalism and the one-time approximation provided by the generalized Kadanoff-Baym ansatz are considered, in order to compare their description of relaxation processes. It is shown that the two-time quantum kinetics leads to thermalization in all the examined cases, which is not the case for the one-time approach in the intermediate-coupling regime, even though it provides convergence to a steady state. The thermalization criterion used is the Kubo-Martin-Schwinger condition.Comment: 7 pages, 8 figures, accepted for publication in Phys. Rev.

    Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach

    Full text link
    A quantum dissipation theory is formulated in terms of hierarchically coupled equations of motion for an arbitrary electronic system coupled with grand canonical Fermion bath ensembles. The theoretical construction starts with the second--quantization influence functional in path integral formalism, in which the Fermion creation and annihilation operators are represented by Grassmann variables. Time--derivatives on influence functionals are then performed in a hierarchical manner, on the basis of calculus--on--path--integral algorithm. Both the multiple--frequency--dispersion and the non-Markovian reservoir parametrization schemes are considered for the desired hierarchy construction. The resulting formalism is in principle exact, applicable to interacting systems, with arbitrary time-dependent external fields. It renders an exact tool to evaluate various transient and stationary quantum transport properties of many-electron systems. At the second--tier truncation level the present theory recovers the real--time diagrammatic formalism developed by Sch\"{o}n and coworkers. For a single-particle system, the hierarchical formalism terminates at the second tier exactly, and the Landuer--B\"{u}ttiker's transport current expression is readily recovered.Comment: The new versio

    Self-consistent ac quantum transport using nonequilibrium Green functions

    Full text link
    We develop an approach for self-consistent ac quantum transport in the presence of time-dependent potentials at non-transport terminals. We apply the approach to calculate the high-frequency characteristics of a nanotube transistor with the ac signal applied at the gate terminal. We show that the self-consistent feedback between the ac charge and potential is essential to properly capture the transport properties of the system. In the on-state, this feedback leads to the excitation of plasmons, which appear as pronounced divergent peaks in the dynamic conductance at terahertz frequencies. In the off-state, these collective features vanish, and the conductance exhibits smooth oscillations, a signature of single-particle excitations. The proposed approach is general and will allow the study of the high-frequency characteristics of many other low-dimensional nanoscale materials such as nanowires and graphene-based systems, which are attractive for terahertz devices, including those that exploit plasmonic excitations.Comment: 11 pages, 5 figures, accepted in Physical Review

    A 150-million-year-old crab larva and its implications for the early rise of brachyuran crabs

    Get PDF
    True crabs (Brachyura) are the most successful group of decapod crustaceans. This success is most likely coupled to their life history, including two specialised larval forms, zoea and megalopa. The group is comparably young, starting to diversify only about 100 million years ago (mya),with a dramatic increase in species richness beginning approximately 50 mya. Early evolution of crabs is still very incompletely known. Here, we report a fossil crab larva, 150 mya, documented with up-to-date imaging techniques. It is only the second find of any fossil crab larva, but the first complete one, the first megalopa, and the oldest one (other fossil ca. 110 mya). Despite its age, the new fossil possesses a very modern morphology, being indistinguishable from many extant crab larvae. Hence, modern morphologies must have been present significantly earlier than formerly anticipated. We briefly discuss the impact of this find on our understanding of early crab evolution
    • …
    corecore