563 research outputs found
Egg Formation in Lepidoptera
Reproductive biology in the Twentieth Century produced comprehensive descriptions of the mechanisms of egg formation in most of the major orders of insects. While many general principles of ovarian development and physiology emerged, every order turned out to have a set of its own special motifs. Discovery of the lepidopteran motifs is summarized in this essay. The emphasis is on developmental mechanisms, beginning with the early growth and differentiation of female germ cells and ending, after many turns in morphogenesis, physiology and biosynthesis, with eggs that are filled with yolk and encased in chorions. Examples of uniquely lepidopteran traits include the cellular composition of ovarian follicles, the number of tubular ovarioles in which they mature, the functions of cell-to-cell junctional complexes in their maturation, their use of glycosaminoglycans to maintain intercellular patency during vitellogenesis, the role of proton and calcium pumps in their ion physiology, a separate postvitellogenic period of water and inorganic ion uptake, and the fine structure and protein composition of their chorions. Discovery of this combination of idiosyncracies was based on advances in the general concepts and techniques of cell and molecular biology and on insights borrowed from studies on other insects. The lepidopteran ovary in turn has contributed much to the understanding of egg formation in insects generally
A Composite HST Spectrum of Quasars
We construct a composite quasar spectrum from 284 HST FOS spectra of 101
quasars with redshifts z > 0.33. The spectrum covers the wavelengths between
350 and 3000 A in the rest frame. There is a significant steepening of the
continuum slope around 1050 A. The continuum between 1050 and 2200 A can be
modeled as a power law with alpha = -0.99. For the full sample the power-law
index in the extreme ultraviolet (EUV) between 350 and 1050 A is alpha = -1.96.
The continuum flux in the wavelengths near the Lyman limit shows a depression
of about 10 percent. The break in the power-law index and the slight depression
of the continuum near the Lyman limit are features expected in Comptonized
accretion-disk spectra.Comment: 10 figures To appear in the February 1, 1997, issue of the Ap.
The immature human ovary shows loss of abnormal follicles and increasing follicle developmental competence through childhood and adolescence
STUDY QUESTION: Do the ovarian follicles of children and adolescents differ in their morphology and in vitro growth potential from those of adults? SUMMARY ANSWER: Pre-pubertal ovaries contained a high proportion of morphologically abnormal non-growing follicles, and follicles showed reduced capacity for in vitro growth. WHAT IS KNOWN ALREADY: The pre-pubertal ovary is known to contain follicles at the early growing stages. How this changes over childhood and through puberty is unknown, and there are no previous data on the in vitro growth potential of follicles from pre-pubertal and pubertal girls. STUDY DESIGN, SIZE, DURATION: Ovarian biopsies from five pre-pubertal and seven pubertal girls and 19 adult women were analysed histologically, cultured in vitro for 6 days, with growing follicles then isolated and cultured for a further 6 days. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ovarian biopsies were obtained from girls undergoing ovarian tissue cryopreservation for fertility preservation, and compared with biopsies from adult women. Follicle stage and morphology were classified. After 6 days in culture, follicle growth initiation was assessed. The growth of isolated secondary follicles was assessed over a further 6 days, including analysis of oocyte growth. MAIN RESULTS AND THE ROLE OF CHANCE: Pre-pubertal ovaries contained a high proportion of abnormal non-growing follicles (19.4 versus 4.85% in pubertal ovaries; 4004 follicles analysed; P = 0.02) characterized by indistinct germinal vesicle membrane and absent nucleolus. Follicles with this abnormal morphology were not seen in the adult ovary. During 6 days culture, follicle growth initiation was observed at all ages; in pre-pubertal samples there was very little development to secondary stages, while pubertal samples showed similar growth activation to that seen in adult tissue (pubertal group: P = 0.02 versus pre-pubertal, ns versus adult). Isolated secondary follicles were cultured for a further 6 days. Those from pre-pubertal ovary showed limited growth (P < 0.05 versus both pubertal and adult follicles) and no change in oocyte diameter over that period. Follicles from pubertal ovaries showed increased growth; this was still reduced compared with follicles from adult women (P < 0.05) but oocyte growth was proportionate to follicle size. LIMITATIONS, REASONS FOR CAUTION: These data derive from only a small number of ovarian biopsies, although large numbers of follicles were analysed. It is unclear whether the differences between groups are related to puberty, or just age. WIDER IMPLICATIONS OF THE FINDINGS: These findings show that follicles from girls of all ages can be induced to grow in vitro, which has important implications for some patients who are at high risk of malignant contamination of their ovarian tissue. The reduced growth of isolated follicles indicates that there are true intrafollicular differences in addition to potential differences in their local environment, and that there are maturational processes occurring in the ovary through childhood and adolescence, which involve the loss of abnormal follicles, and increasing follicle developmental competence. STUDY FUNDING/COMPETING INTEREST(S): Funded by MRC grants G0901839 and G1100357. No competing interests
Towards a New Standard Model for Black Hole Accretion
We briefly review recent developments in black hole accretion disk theory,
emphasizing the vital role played by magnetohydrodynamic (MHD) stresses in
transporting angular momentum. The apparent universality of accretion-related
outflow phenomena is a strong indicator that large-scale MHD torques facilitate
vertical transport of angular momentum. This leads to an enhanced overall rate
of angular momentum transport and allows accretion of matter to proceed at an
interesting rate. Furthermore, we argue that when vertical transport is
important, the radial structure of the accretion disk is modified at small
radii and this affects the disk emission spectrum. We present a simple model
demonstrating how energetic, magnetically-driven outflows modify the emergent
disk emission spectrum with respect to that predicted by standard accretion
disk theory. A comparison of the predicted spectra against observations of
quasar spectral energy distributions suggests that mass accretion rates
inferred using the standard disk model may severely underestimate their true
values.Comment: To appear in the Fifth Stromlo Symposium Proceedings special issue of
ApS
Identification and functional analysis of SKA2 interaction with the glucocorticoid receptor
Glucocorticoid (GC) receptors (GRs) have profound anti-survival effects on human small cell lung cancer (SCLC). To explore the basis of these effects, protein partners for GRs were sought using a yeast two-hybrid screen. We discovered a novel gene, FAM33A, subsequently identified as a SKA1 partner and involved in mitosis, and so renamed Ska2. We produced an anti-peptide antibody that specifically recognized full-length human SKA2 to measure expression in human cell lines and tissues. There was a wide variation in expression across multiple cell lines, but none was detected in the liver cell line HepG2. A xenograft model of human SCLC had intense staining and archival tissue revealed SKA2 in several human lung and breast tumours. SKA2 was found in the cytoplasm, where it co-localized with GR, but nuclear expression of SKA2 was seen in breast tumours. SKA2 overexpression increased GC transactivation in HepG2 cells while SKA2 knockdown in A549 human lung epithelial cells decreased transactivation and prevented dexamethasone inhibition of proliferation. GC treatment decreased SKA2 protein levels in A549 cells, as did Staurosporine, phorbol ester and trichostatin A; all agents that inhibit cell proliferation. Overexpression of SKA2 potentiated the proliferative response to IGF-I exposure, and knockdown with shRNA caused cells to arrest in mitosis. SKA2 has recently been identified in HeLa S3 cells as part of a complex, which is critical for spindle checkpoint silencing and exit from mitosis. Our new data show involvement in cell proliferation and GC signalling, with implications for understanding how GCs impact on cell fate
International Study of Chaplains’ Attitudes About Research
An online survey was conducted by twelve professional chaplain organizations to assess chaplains’ attitudes about and involvement in research. A total of 2,092 chaplains from 23 countries responded to the survey. Over 80% thought research was definitely important and nearly 70% thought chaplains should definitely be research literate. Just over 40% said they regularly read research articles and almost 60% said they occasionally did. The respondents rated their own research literacy as 6.5 on a 0–10 scale. Significant positive inter-correlations were found among all four measures: importance of (a) research and (b) research literacy; (c) frequency of reading articles; and (d) research literacy rating. Approximately 35% were never involved, 37% had been involved, 17% were currently involved, and 11% expected to be involved in research. The last three groups were significantly more likely to think research and research literacy were important and to read research articles than chaplains who were never involved in research. Given chaplains’ interest in research, actions should be undertaken to facilitate further research engagement
Calibration of myocardial T2 and T1 against iron concentration.
BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron.
METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy.
RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001).
CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies
- …