6,276 research outputs found

    Exact Results for 1D Kondo Lattice from Bosonization

    Full text link
    We find a solvable limit to the problem of the 1D electron gas interacting with a lattice of Kondo scattering centers. In this limit, we present exact results for the problems of incommensurate filling, commensurate filling, impurity vacancy states, and the commensurate-incommensurate transition.Comment: 4 pages, two columns, Latex fil

    Comparison of satellite-derived sea surface temperatures with in situ skin measurements

    Get PDF
    Sea surface temperatures (SSTs), computed from sensor systems on the National Oceanographic and Atmospheric Administration (NOAA) polar-orbiting satellites, are compared with surface skin temperatures (from an infrared radiometer mounted on a ship) and subsurface temperature measurements. Three split window retrieval methods using channels 4 and 5 of the NOAA 7 advanced very high resolution radiometer (AVHRR) sensor were investigated. These methods were (1) using AVHRR alone, (2) using AVHRR with atmospheric temperature and water vapor profiles from the TIROS operational vertical sounder (TOVS), and (3) using AVHRR and data from the high-resolution infrared sounder (HIRS). TOVS sensors (including HIRS) are carried by the same satellite as the AVHRR and provide simultaneous corrections for the AVHRR-based SST estimates. The importance of scan angle correction to define the correct atmospheric path is discussed, and the improvement of SST retrievals using sensor combinations is demonstrated with satellite versus ship skin temperature mean differences ranging from 0.55° to 0.73°C for AVHRR alone, from -0.39°to 0.71°C for AVHRR plus TOVS, and from 0.22°to 0.33°C for AVHRR plus HIRS. The improved SST accuracy by AVHRR plus HIRS is due to additional correction for the atmospheric water vapor and temperature structures, made possible with some of the HIRS channels. Significant differences between ship skin and subsurface temperatures were observed, with the mean deviation being 0.2°C for a range of temperature differences between -0.25°and 0.6°C. © Copyright 1987 by the American Geophysical Union

    On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature

    No full text
    Satellite infrared sensors only observe the temperature of the skin of the ocean rather than the bulk sea surface temperature (SST) traditionally measured from ships and buoys. In order to examine the differences and similarities between skin and bulk temperatures, radiometric measurements of skin temperature were made in the North Atlantic Ocean from a research vessel along with coincident measurements of subsurface bulk temperatures, radiative fluxes, and meteorological variables. Over the entire 6-week data set the bulk-skin temperature differences (AT) range between -1.0 and 1.0 K with mean differences of 0.1 to 0.2 K depending on wind and surface heat flux conditions. The bulk-skin temperature difference varied between day and night (mean differences 0.11 and 0.30 K, respectively) as well as with different cloud conditions, which can mask the horizontal variability of SST in regions of weak horizontal temperature gradients. A coherency analysis reveals strong correlations between skin and bulk temperatures at longer length scales in regions with relatively weak horizontal temperature gradients. The skin-bulk temperature difference is pararneterized in terms of heat and momentum fluxes (or their related variables) with a resulting accuracy of 0.11 K and 0.17 K for night and daytime. A recommendation is made to calibrate satellite derived SST's during night with buoy measurements and the additional aid of meteorological variables to properly handle AT variations

    Luther-Emery Stripes, RVB Spin Liquid Background and High Tc Superconductivity

    Full text link
    The stripe phase in high Tc cuprates is modeled as a single stripe coupled to the RVB spin liquid background by the single particle hopping process. In normal state, the strong pairing correlation inherent in RVB state is thus transfered into the Luttinger stripe and drives it toward spin-gap formation described by Luther-Emery Model. The establishment of global phase coherence in superconducting state contributes to a more relevant coupling to Luther-Emery Stripe and leads to gap opening in both spin and charge sectors. Physical consequences of the present picture are discussed, and emphasis is put on the unification of different energy scales relevant to cuprates, and good agreement is found with the available experimental results, especially in ARPES.Comment: 4 pages, RevTe

    ExploreNEOs VIII: Dormant Short-Period Comets in the Near-Earth Asteroid Population

    Get PDF
    We perform a search for dormant comets, asteroidal objects of cometary origin, in the near-Earth asteroid (NEA) population based on dynamical and physical considerations. Our study is based on albedos derived within the ExploreNEOs program and is extended by adding data from NEOWISE and the Akari asteroid catalog. We use a statistical approach to identify asteroids on orbits that resemble those of short-period near-Earth comets using the Tisserand parameter with respect to Jupiter, the aphelion distance, and the minimum orbital intersection distance with respect to Jupiter. From the sample of NEAs on comet-like orbits, we select those with a geometric albedo pV0.064p_V \leq 0.064 as dormant comet candidates, and find that only \sim50% of NEAs on comet-like orbits also have comet-like albedos. We identify a total of 23 NEAs from our sample that are likely to be dormant short-period near-Earth comets and, based on a de-biasing procedure applied to the cryogenic NEOWISE survey, estimate both magnitude-limited and size-limited fractions of the NEA population that are dormant short-period comets. We find that 0.3-3.3% of the NEA population with H21H \leq 21, and 95+29^{+2}_{-5}% of the population with diameters d1d \geq 1 km, are dormant short-period near-Earth comets.Comment: 23 pages, 2 figures, 2 tables; accepted for publication in A

    Two and Three Dimensional Incommensurate Modulation in Optimally-Doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    X-ray scattering measurements on optimally-doped single crystal samples of the high temperature superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} reveal the presence of three distinct incommensurate charge modulations, each involving a roughly fivefold increase in the unit cell dimension along the {\bf b}-direction. The strongest scattering comes from the well known (H, K±\pm 0.21, L) modulation and its harmonics. However, we also observe broad diffraction which peak up at the L values complementary to those which characterize the known modulated structure. These diffraction features correspond to correlation lengths of roughly a unit cell dimension, ξc\xi_c\sim20 A˚\AA in the {\bf c} direction, and of ξb\xi_b\sim 185 A˚\AA parallel to the incommensurate wavevector. We interpret these features as arising from three dimensional incommensurate domains and the interfaces between them, respectively. In addition we investigate the recently discovered incommensuate modulations which peak up at (1/2, K±\pm 0.21, L) and related wavevectors. Here we explicitly study the L-dependence of this scattering and see that these charge modulations are two dimensional in nature with weak correlations on the scale of a bilayer thickness, and that they correspond to short range, isotropic correlation lengths within the basal plane. We relate these new incommensurate modulations to the electronic nanostructure observed in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using STM topography.Comment: 8 pages, 8 figure

    On the Relationship Between the Pseudo- and Superconducting Gaps: Effects of Residual Pairing Correlations Below Tc

    Full text link
    The existence of a normal state spectral gap in underdoped cuprates raises important questions about the associated superconducting phase. For example, how does this pseudogap evolve into its below Tc counterpart? In this paper we characterize this unusual superconductor by investigating the nature of the ``residual'' pseudogap below Tc and, find that it leads to an important distinction between the superconducting excitation gap and order parameter. Our approach is based on a conserving diagrammatic BCS Bose-Einstein crossover theory which yields the precise BCS result in weak coupling at any T<Tc and reproduces Leggett's results in the T=0 limit. We explore the resulting experimental implications.Comment: REVTeX, 4 pages, 1 EPS figure (included

    Scaling theory of the Mott-Hubbard metal-insulator transition in one dimension

    Full text link
    We use the Bethe ansatz equations to calculate the charge stiffness Dc=(L/2)d2E0/dΦc2Φc=0D_{\rm c} = (L/2) d^2 E_0/d\Phi_{\rm c}^2|_{\Phi_{\rm c}=0} of the one-dimensional repulsive-interaction Hubbard model for electron densities close to the Mott insulating value of one electron per site (n=1n=1), where E0E_0 is the ground state energy, LL is the circumference of the system (assumed to have periodic boundary conditions), and (c/e)Φc(\hbar c/e)\Phi_{\rm c} is the magnetic flux enclosed. We obtain an exact result for the asymptotic form of Dc(L)D_{\rm c}(L) as LL\to \infty at n=1n=1, which defines and yields an analytic expression for the correlation length ξ\xi in the Mott insulating phase of the model as a function of the on-site repulsion UU. In the vicinity of the zero temperature critical point U=0, n=1n=1, we show that the charge stiffness has the hyperscaling form Dc(n,L,U)=Y+(ξδ,ξ/L)D_{\rm c}(n,L,U)=Y_+(\xi \delta, \xi/L), where δ=1n\delta =|1-n| and Y+Y_+ is a universal scaling function which we calculate. The physical significance of ξ\xi in the metallic phase of the model is that it defines the characteristic size of the charge-carrying solitons, or {\em holons}. We construct an explicit mapping for arbitrary UU and ξδ1\xi \delta \ll 1 of the holons onto weakly interacting spinless fermions, and use this mapping to obtain an asymptotically exact expression for the low temperature thermopower near the metal-insulator transition, which is a generalization to arbitrary UU of a result previously obtained using a weak- coupling approximation, and implies hole-like transport for 0<1nξ10<1-n\ll\xi^{-1}.Comment: 34 pages, REVTEX (5 figures by request

    Instability of charge ordered states in doped antiferromagnets

    Full text link
    We analyze the induced interactions between localized holes in weakly-doped Heisenberg antiferromagnets due to the modification of the quantum zero point spin wave energy; i.e. the analogue of the Casimir effect. We show that this interaction is uniformly attractive and falls off as r^{-2 d+1} in d dimensions. For ``stripes'', i.e parallel (d-1)-dimensional hypersurfaces of localized holes, the interaction energy per unit hyperarea is attractive and falls, generically, like r^{-d}. We argue that, in the absence of a long-range Coulomb repulsion between holes, this interaction leads to an instability of any charge-ordered state in the dilute doping limit.Comment: Revtex, 5 pages two-column format, 3 ps figures (epsf). Two references added and some textual change

    Implications of Charge Ordering for Single-Particle Properties of High-Tc Superconductors

    Full text link
    The consequences of disordered charge stripes and antiphase spin domains for the properties of the high-temperature superconductors are studied. We focus on angle-resolved photoemission spectroscopy and optical conductivity, and show that the many unusual features of the experimentally observed spectra can be understood naturally in this way. This interpretation of the data, when combined with evidence from neutron scattering and NMR, suggests that disordered and fluctuating stripe phases are a common feature of high-temperature superconductors.Comment: 4 pages, figures by fax or mai
    corecore