research

Instability of charge ordered states in doped antiferromagnets

Abstract

We analyze the induced interactions between localized holes in weakly-doped Heisenberg antiferromagnets due to the modification of the quantum zero point spin wave energy; i.e. the analogue of the Casimir effect. We show that this interaction is uniformly attractive and falls off as r^{-2 d+1} in d dimensions. For ``stripes'', i.e parallel (d-1)-dimensional hypersurfaces of localized holes, the interaction energy per unit hyperarea is attractive and falls, generically, like r^{-d}. We argue that, in the absence of a long-range Coulomb repulsion between holes, this interaction leads to an instability of any charge-ordered state in the dilute doping limit.Comment: Revtex, 5 pages two-column format, 3 ps figures (epsf). Two references added and some textual change

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019