16,221 research outputs found

    Localized gap soliton trains of Bose-Einstein condensates in an optical lattice

    Full text link
    We develop a systematic analytical approach to study the linear and nonlinear solitary excitations of quasi-one-dimensional Bose-Einstein condensates trapped in an optical lattice. For the linear case, the Bloch wave in the nthnth energy band is a linear superposition of Mathieu's functions cen1ce_{n-1} and sense_n; and the Bloch wave in the nthnth band gap is a linear superposition of cence_n and sense_n. For the nonlinear case, only solitons inside the band gaps are likely to be generated and there are two types of solitons -- fundamental solitons (which is a localized and stable state) and sub-fundamental solitons (which is a lacalized but unstable state). In addition, we find that the pinning position and the amplitude of the fundamental soliton in the lattice can be controlled by adjusting both the lattice depth and spacing. Our numerical results on fundamental solitons are in quantitative agreement with those of the experimental observation [Phys. Rev. Lett. {\bf92}, 230401 (2004)]. Furthermore, we predict that a localized gap soliton train consisting of several fundamental solitons can be realized by increasing the length of the condensate in currently experimental conditions.Comment: 9 pages, 6 figures, accepted for publicaiton in PR

    Reconstructed Intentions in Collaborative Problem Solving Dialogues

    Get PDF
    We provide evidence that speech act recognition, is 1) difficult for humans to do and 2) likely to misidentify proposals involving reconstructed intentions. We examine the reliability of coding for speech acts in collaborative dialogues and we present an approach for recognizing reconstructed proposals using domain context and other more easily recognized features. 1 Introduction Speech act recognition plays a prominent role in dialogue understanding, in traditional approaches that infer a plan using plan construction operators [PA80], [LA90], [LC91, LC92], and in more recent techniques relying on statistical correlations or finite state machines [RM95, QDL + 97]. Both approaches recognize surface speech acts, using surface form and information provided by the discourse context and the discourse operators, or by a finite state approximation of the planning information. These approaches assume that it is (relatively) simple to recognize speech acts, and that speech acts are a requi..

    The world-sheet description of A and B branes revisited

    Get PDF
    We give a manifest supersymmetric description of A and B branes on Kahler manifolds using a completely local N=2 superspace formulation of the world-sheet nonlinear sigma-model in the presence of a boundary. In particular, we show that an N=2 superspace description of type A boundaries is possible, at least when the background is Kahler. This leads to an elegant and concrete setting for studying coisotropic A branes. Here, apgesan important role is played by the boundary potential, whose precise physical meaning remains to be fully understood. Duality transformations relating A and B branes in the presence of isometries are studied as well.Comment: LaTeX, 32 page

    Fast quantum algorithm for numerical gradient estimation

    Full text link
    Given a blackbox for f, a smooth real scalar function of d real variables, one wants to estimate the gradient of f at a given point with n bits of precision. On a classical computer this requires a minimum of d+1 blackbox queries, whereas on a quantum computer it requires only one query regardless of d. The number of bits of precision to which f must be evaluated matches the classical requirement in the limit of large n.Comment: additional references and minor clarifications and corrections to version

    (Never) Mind your p's and q's: Von Neumann versus Jordan on the Foundations of Quantum Theory

    Get PDF
    In two papers entitled "On a new foundation [Neue Begr\"undung] of quantum mechanics," Pascual Jordan (1927b,g) presented his version of what came to be known as the Dirac-Jordan statistical transformation theory. As an alternative that avoids the mathematical difficulties facing the approach of Jordan and Paul A. M. Dirac (1927), John von Neumann (1927a) developed the modern Hilbert space formalism of quantum mechanics. In this paper, we focus on Jordan and von Neumann. Central to the formalisms of both are expressions for conditional probabilities of finding some value for one quantity given the value of another. Beyond that Jordan and von Neumann had very different views about the appropriate formulation of problems in quantum mechanics. For Jordan, unable to let go of the analogy to classical mechanics, the solution of such problems required the identication of sets of canonically conjugate variables, i.e., p's and q's. For von Neumann, not constrained by the analogy to classical mechanics, it required only the identication of a maximal set of commuting operators with simultaneous eigenstates. He had no need for p's and q's. Jordan and von Neumann also stated the characteristic new rules for probabilities in quantum mechanics somewhat differently. Jordan (1927b) was the first to state those rules in full generality. Von Neumann (1927a) rephrased them and, in a subsequent paper (von Neumann, 1927b), sought to derive them from more basic considerations. In this paper we reconstruct the central arguments of these 1927 papers by Jordan and von Neumann and of a paper on Jordan's approach by Hilbert, von Neumann, and Nordheim (1928). We highlight those elements in these papers that bring out the gradual loosening of the ties between the new quantum formalism and classical mechanics.Comment: New version. The main difference with the old version is that the introduction has been rewritten. Sec. 1 (pp. 2-12) in the old version has been replaced by Secs. 1.1-1.4 (pp. 2-31) in the new version. The paper has been accepted for publication in European Physical Journal

    Symmetric three-particle motion in Stokes flow: equilibrium for heavy spheres in contrast to "end-of-world" for point forces

    Full text link
    A stationary stable solution of the Stokes equations for three identical heavy solid spheres falling in a vertical plane is found. It has no analog in the point-particle approximation. Three spheres aligned horizontally at equal distances evolve towards the equilibrium relative configuration while the point particles collapse onto a single point in a finite time.Comment: 4 pages, 7 figure

    Homogenization induced by chaotic mixing and diffusion in an oscillatory chemical reaction

    Get PDF
    A model for an imperfectly mixed batch reactor with the chlorine dioxide-iodine-malonic acid (CDIMA) reaction, with the mixing being modelled by chaotic advection, is considered. The reactor is assumed to be operating in oscillatory mode and the way in which an initial spatial perturbation becomes homogenized is examined. When the kinetics are such that the only stable homogeneous state is oscillatory then the perturbation is always entrained into these oscillations. The rate at which this occurs is relatively insensitive to the chemical effects, measured by the Damkohler number, and is comparable to the rate of homogenization of a passive contaminant. When both steady and oscillatory states are stable, spatially homogeneous states, two possibilities can occur. For the smaller Damkohler numbers, a localized perturbation at the steady state is homogenized within the background oscillations. For larger Damkohler numbers, regions of both oscillatory and steady behavior can co-exist for relatively long times before the system collapses to having the steady state everywhere. An interpretation of this behavior is provided by the one-dimensional Lagrangian filament model, which is analyzed in detail

    Coulomb Drag between One-Dimensional Wigner Crystal Rings

    Full text link
    We consider the Coulomb drag between two metal rings in which the long range Coulomb interaction leads to the formation of a Wigner crystal. The first ring is threaded by an Ahranov Bohm flux creating a persistent current J_0. The second ring is brought in close proximity to the second and due to the Coulomb interaction between the two rings a drag current J_D is produced in the second. We investigate this system at zero temperature for perfect rings as well as the effects of impurities. We show that the Wigner crystal state can in principle lead to a higher ratio of drag current to drive current J_D/J_0 than in weakly interacting electron systems.Comment: 12 pages, 10 figure
    corecore