1,793 research outputs found

    Book Reviews

    Get PDF

    A flexible flight display research system using a ground-based interactive graphics terminal

    Get PDF
    Requirements and research areas for the air transportation system of the 1980 to 1990's were reviewed briefly to establish the need for a flexible flight display generation research tool. Specific display capabilities required by aeronautical researchers are listed and a conceptual system for providing these capabilities is described. The conceptual system uses a ground-based interactive graphics terminal driven by real-time radar and telemetry data to generate dynamic, experimental flight displays. These displays are scan converted to television format, processed, and transmitted to the cockpits of evaluation aircraft. The attendant advantages of a Flight Display Research System (FDRS) designed to employ this concept are presented. The detailed implementation of an FDRS is described. The basic characteristics of the interactive graphics terminal and supporting display electronic subsystems are presented and the resulting system capability is summarized. Finally, the system status and utilization are reviewed

    Book Reviews

    Get PDF

    Effects of Outboard Thickened and Blunted Leading Edges on the Wave Drag of a 45 Degree Swept-Wing and Body Combination

    Get PDF
    An investigation to evaluate the effects of thickened and blunted leading-edge modifications on the wave drag of a swept wing has been made at Mach numbers from 0.65 to 2.20 and at a Reynolds number of 2,580,000 based on the mean aerodynamic chord of the basic wing. Two leading-edge designs were investigated and they are referred to as the thickened and the blunted modifications although both sections had equally large leading-edge radii. The thickened leading edge was formed by increasing the thickness over the forward 40 percent of the basic wing section. The blunted modification was formed by reducing the wing chords about 1 percent and by increasing the section thickness slightly over the forward 6 percent of the basic section in a manner to keep the wing sweep and volume essentially equal to the respective values for the basic wing. The basic wing had an aspect ratio of 3, a leading-edge sweep of 45 deg., a taper ratio of 0.4, and NACA 64AO06 sections perpendicular to a line swept back 39.45 deg., the quarter-chord line of these sections. Test results indicated that the thickened modification resulted in an increase in zero-lift drag coefficient of from 0.0040 to 0.0060 over values for the basic model at Mach numbers at which the wing leading edge was sonic or supersonic. Although drag coefficients of both the basic and thickened models were reduced at all test Mach numbers by body indentations designed for the range of Mach numbers from 1.00 to 2.00, the greater drag of the thickened model relative to that of the basic model was not reduced. The blunted model, however, had less than one quarter of the drag penalty of the thickened model relative to the basic model at supersonic leading-edge conditions (M greater or equal to root-2)

    Investigation at Mach Numbers of 0.20 to 3.50 of a Blended Diamond Wing and Body Combination of Sonic Design but with Low Wave-Drag Increase with Increasing Mach Number

    Get PDF
    A diamond wing and body combination was designed to have an area distribution which would result in near optimum zero-lift wave-drag coefficients at a Mach number of 1.00, and decreasing wave-drag coefficient with increasing Mach number up to near sonic leading-edge conditions for the wing. The airfoil section were computed by varying their shape along with the body radii (blending process) to match the selected area distribution and the given plan form. The exposed wing section had an average maximum thickness of about 3 percent of the local chords, and the maximum thickness of the center-line chord was 5.49 percent. The wing had an aspect ratio of 2 and a leading-edge sweep of 45 deg. Test data were obtained throughout the Mach number range from 0.20 to 3.50 at Reynolds numbers based on the mean aerodynamic chord of roughly 6,000,000 to 9,000,000. The zero-lift wave-drag coefficients of the diamond model satisfied the design objectives and were equal to the low values for the Mach number 1.00 equivalent body up to the limit of the transonic tests. From the peak drag coefficient near M = 1.00 there was a gradual decrease in wave-drag coefficient up to M = 1.20. Above sonic leading-edge conditions of the wing there was a rise in the wave-drag coefficient which was attributed in part to the body contouring as well as to the wing geometry. The diamond model had good lift characteristics, in spite of the prediction from low-aspect-ratio theory that the rear half of the diamond wing would carry little lift. The experimental lift-curve slope obtained at supersonic speeds were equal to or greater than the values predicted by linear theory. Similarly the other basic aerodynamic parameters, aerodynamic center position, and maximum lift-drag ratios were satisfactorily predicted at supersonic speeds
    corecore