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INVESTIGATION AT MACH NUMBERS OF 0.20 TO 3.50 OF A

BLENDED DIAMOND WING AND BODY COM_BINATION OF

SONIC DESIGN BUT WITH LOW WAVE-DRAG

INCREASE WITH INCREASING

MACH NU_4BER

By George H. Holdaway, Jack A. Mellenthin, and

Elaine W. Hatfield

SUMMARY

A diamond wing and body combination was designed to have an area

distribution _ich would result in near optimum zero-lift wave-drag

coefficients at a Mach number of 1.00, and decreasing wave-drag coeffi-

cients with increasing Mach number up to near sonic leading-edge condi-

tions for the wing. The airfoil sections were computed by varying their

shapes along with the body radii (blending process) to match the _elected

area distribution and the given plan form. The exposed wing sections had

an average maximum thickness of about 3 percent of the local chord_ and

the maximum thickness of the center-line chord was 5.49 percent. The wing

had an aspect ratio of 2 and a leading-edge sweep of 45 °. Test data were

obtained throughout the Mach number range from 0.20 to 3.50 at Reynold_

numbers based on the mean aerodynamic chord of roughly 6,000,000 to

9,000,000.

The zero-lift wave-drag coefficients of the diamond model satisfied

the design objectives and were equal to the io_¢ values for the Mach number

1.00 equivalent body up to the limit of the transonic tests. From the peak

drag coefficient near M = 1.00 there was a gradual decrease in wave-drag

coefficient up to M = 1.20. Above sonic leading-edge condition_ of the

_¢ing there was a rise in the wave-drag coefficient _ich was attributed in

part to the body contouring as well as to the wing geometry.

The diamond model had good lift characteristics_ in spite of the

prediction from low-aspect-ratio theory that the rear half of the diamond

wing would carry little lift. The experimental lift-curve slopes obtained

at supersonic speeds were equal to or greater than the values predicted by

linear theory. Similarly the other basic aerodynamic parameters_ aero-

lynamic center position_ s_d maximum lift-drag ratios were satisfactorily

predicted at supersonic speeds.



INTRODUCTION

The design of airplanes is largely a matter of compromise. This is
indicated by theoretical considerations of the selection of a wing plan
form as reported in references i, 2, and 3. For instance, the diamond
wing which is the best structural shape of the zero-taper-ratio plan form
is generally considered aerodynamically the poorest. Aerodynamicists
point out on the basis of low-aspect-ratio or slender-body theories, that
the rear half of a low-aspect-ratio diamondwing does not produce lift
(ref. i or 4), and the zero sweepof the mid-chord line results in high
transonic wave drag (refs. i through 5). For most low-aspect-ratio wing-
body combinations, the wave drag at Machn_ber 1.00 can be reduced a
large amountby the application of the simple area rule of reference 6;
however, at Machnumbersonly slightly above 1.00 the wave-drag coeffi-
cients will generally increase considerably (in particular for config-
urations with unswept wings). Similarly the supersonic area rule of
reference 7 permits one to design for supersonic Machnumbers, but the
procedures are more complicated and will result in an increase in wave-
drag coefficients at nondesign Machnumbers. The area rules are usually
applied by selecting a wing of fixed plan f)rm and thickness distribution
and shaping a fuselage to provide a smooth _rea distribution. A more
flexible approach used in the present investigation was to vary both the
wing thickness distribution and the fuselag_ shape to obtain a blended
wing-body combination.

The purpose of the investigation was to seek the lowest possible wave
drag at Machnumber 1.00 (configuration mad_optimum at M = 1.00)3 which
was consistent with a decreasing supersonic wave-drag coefficient. A
brief statement of the design concept invol_ed is to concentrate the wing
volume near the body center line with a fav)rable or minimumdistortion
with Machnumberof the area distributions iefined by the theory of refer-
ence 7. Details of the concepts and procedires used in the design of the
test model (aspect-ratio-2 diamondwing) ar_ given in appendix B. The
symbols used in the report (including appendix B) are listed in appen-
dix Ao

Experiments were conducted on the diam)nd wing-body combination at
Machnumbersfrom 0.20 through 3.50 and at _eynolds numbersper foot that
ranged from 1,0003000 to 630003000. Data w_re taken at each Machnumber
at a Reynolds numberper foot of at least 3,000,000 to 43000,000. The
Reynolds numbersbased on the meanaerodyn_aic chord of 26.67 inches would
be, of course, over twice the numbersstated. Also tested at transonic
speeds was a body with the samearea distrfi)ution as the wing-body combi-
nation. As a check on the experimental resilts3 theoretical predictions
were madeof the friction drag3 zero-lift w_ivedrag, drag due to lift,
lift-curve slope, maximumlift-drag ratio, and aerodynamic center position
of the wing-body combination.



3

MODELS AND TESTS

The geometric details of the diamond wing and body combination are

presented in figures i through 3 and in tables I and II. The radii for

the body components are listed in table I. The forward and rearward body

components are defined by the design area distribution, KA2s , shown in

figure 2. The central portion of the body was designed to be as small as

practical with sufficient space for the strain-gage balance which measured

the aerodynamic forces. The low-drag shape selected for this central

portion was part of a yon K_rm_n ogive (Z = 40 in. and rb = 1.625 in.)

defined by the following equation (also see table I):

os_ os-i l-2_____x. i sin --r
2

and was a cylinder for the body stations rearward of 40 inches. Experi-

mental wave-drag results and pressure distributions for a yon K_rms(n

ogive are reported in reference 8. The M = 1.00 equivalent body of the

wing-body combination was also tested and is defined in table I and

figurel(b).

The wing coordinates are listed in table II. The wing-thickness

distribution was computed as described in appendix B and is illustrated

in figure 3- The wing thickness in each case is formed by straight-line

elements perpendicular to the model center line forming triangular span-

wise sections. Representative maximum thicknesses in percent chord are

5.49, 4.04, and 3.07 for center-line, body juncture (2 in. from the

center line), and mean aerodynamic chords respectively. The average

maximum thickness of the exposed wing was about the same as the maximum

thickness of the mean aerodynamic chord.

Both the diamond model and its equivalent body were tested in the

Ames 14-foot transonic wind tunnel at Mach numbers of 0.60 through 1.20.

The diamond model was also tested in the Ames 12-foot subsonic pressurized

wind tunnel and in the 9- by 7-foot and the 8- by 7-foot supersonic test

sections of the Ames Unitary Plan wind tunnel. The latter supersonic

facilities are described in reference 9. A photograph of the diamond

model in the 8- by 7-foot supersonic test section is shown in figure 4.

The equivalent body is shown in the perforated test section of the

transonic tunnel in figure 5. The Mach number range of the tests in each

facility as well as the range of the other test variables is shown in the

following table:



Wind tunnel throat

12-foot
12-foot

14-foot

14-foot

9- by 7-foot
9- by 7-foot

8- by 7-foot

$- by 7-foot
8- by 7-foot

M

0.20
o.5o

0.60 to 0.80

0.80 to 1.20

.5_

_.55 to 2.35

2.50 to 3.00

3.0o to 3.50

2.5o to 3.5o

R/ft

3,000,000 ald

6,000,000

3,500,000 to

4,000,000

4,000,000

4,000,000

3,000,000

3,000,000 _Id

4,000,000

3,000,000

1,000,000

CC,

deg

-4 to 26

-4 to i$

-2 to ii

-2 to 6

-2 to 7

-2 to ii

-2 to 12

-2 to 12

-2 to 12

Transition

Free

Free

Free and fixed

Free and fixed

Fixed

Fixed

Free and fixed

Free and fixed

Free

Three-component aerodynamic forces and moments were measured and

corrected by standard procedures. For the _)del sizes and shapes, the

force corrections for blockage and buoyancy zere generally found to be

negligible. Wall interference corrections w_re required for the angle

o;_ attack and drag data obtained in the subs)nic wind tunnel, and these

corrections were made based on the theory of reference i0. At all Mach

numbers, the drag coefficients were adjusted by equating the body base

pressures to free-stream static pressures. IAII aerodynamic coefficients

are based on the complete plan-form area of I%he diamond wing of $00 square

inches. The pitching-moment coefficients we Te computed about a longitu-

dinal center 34.50 inches rearward of the noi_e of the body or 7.5 percent

of the root chord forward of the centroid of the wing area. This position

was selected for neutral longitudinal stability at supersonic speeds.

The procedures used to compute the fricIsion drag and to fix transi-

tion, and the effects of the boundary-layer srip are discussed in

appendix C; however, a brief description wil_ be given here of the dis-

tributed roughness used to fix the location _)f the boundary-layer transi-

tion from laminar to turbulent flow. The grLt size required (mean height

of about 0.040 in.) was determined by prelimmary tests at M = 3.50 and

was used on the body and the wing at all Macll numbers although the size

was excessive for the lower Mach numbers. A laminar-flow area of 5 percent

of the wing area was allowed (i.e., the grit was located 1.13 in. rearward

of the wing leading edge and of the body nos,_ in a streamwise direction).



RESULTSANDDISCUSSION

The basic data are presented in figures 6 through i0. These figures
illustrate that the effects of the Reynolds numberchangeswere generally
small; however_ the Reynolds numberswill be noted where the effect on
the drag data maybe of someimportance. The discussion will deal mainly
with data taken at a Reynolds numberper foot of 3,000_000 or 4_000_000.
Thesebasic data plots also indicate that the effect of fixing transition
is relatively small and primarily effects the drag data. The effect of
fixing transition is discussed in appendix C_ so the following discussion
is directed toward transition-fixed results.

The discussion is presented in two parts: the first section is an
analysis of the zero-lift wave drag (the major design parameter), and
the second is an analysis of the aerodynamic trends with Machnumber.

Zero-Lift WaveDrag

A fundamental way of experimentally evaluating how well the diamond
model met the design objective (to seek a low wave drag at Machnumber
1.00_ which was consistent with a decreasing supersonic wave-drag coeffi-
cient) is to compare its wave drag with that of its equivalent body which
is in turn comparedwith an optimumbody. It should be rememberedthat
the wave drag of a wing-body combination is usually greater than that for
its M = 1.00 equivalent body at Machnumbersonly slightly above 1.00.
Only transonic data were obtained for the equivalent body and thus the
comparisons are madeat these speeds. At transonic speeds the diamond
model fully met the design expectations as shownby the wave-drag coeffi-
cients in figure ii. Essentially identical zero-lift wave-drsg coeffi-
cients were obtained for the diamondmodel and its equivalent body at
Machnumbersup to 1.20. Fromthe peak drag coefficient near H = 1.00
there was a gradual decrease in drag coefficient up to M = 1.20.

In figure 12 the wave-drag coefficients of the equivalent body are
comparedwith those for a minimumwave-drag body and with theoretical
predictions based on the method of reference ii. The data points are
shownfor direct evaluation. The coefficients are based on the plan-form
area of the diamondwing. Eachbody had a closed-body fineness ratio of
12.5 and the body shapes are discussed fully in appendix B. The data
for the Sears-Haackbody (minimumtransonic wave-drsg body for prescribed
volume and length, ref. 12) were obtained from the investigatmon of
reference 13. Both bodies had transition fixed; however_ the grit used
on the Sears-Haackbody was selected for transonic speeds and was much
smaller (about 0.003 in. in diameter). Note that the wave-drag coeffi-
cients for the equivalent body are substantiated by theory and are as
low as or lower than the minimumwave-drag body for Machnumbers greater



than 1.04. The difference in wave-drag coefficients at M = 1.00 between
the bodies is muchgreater than that indicate_ by theory (see appendix B)
and maybe partially due to the difference in the size of the grit used
to fix transition.

The diamondmodel was designed for M = 1.00 and one would not
expect the wave-drag coefficients to continue to decrease through Mach
numbers at which the velocities normal to the wing leading edge are sonic
or supersonic. It is of interest to see how experiment and predictions
would compareat higher supersonic Math numbers. Such comparisons are
madein figure 13, with theoretical predictio_s based on 49 harmonics
representing the derivatives of the area curves. Predictions were also
madewith 25 harmonics; however, the larger n!anberof terms was required
to give a good representation of the area distributions. At transonic
speeds the solutions for the diamondmodel based on 25 harmonics were
satisfactory and almost equal to the 49-term solution.

The theoretical computations of wave drag were madeby two methods_
each of which was based on the procedures of reference ii. Eachmethod
would give essentially the sameanswer if the body alone equivalent area
distribution did not vary with Machnumber (i.e., slender bodies accept-
able to the theory (ref. 7))- Thus at the hii_her supersonic Machnumbers
where different answers were obtained as showu_in figure 13, both theo-
retical predictions are questionable. It is of interest to note that
this fact plus an analysis of the area distributions indicate that the
rise in wave-drag coefficients at Machnumbersnear sonic leading-edge
conditions of the wing maybe attributed in p_t to the body contouring.
Method i, used for the results presented in fLgure 13, is the more
convenient of the two methods, and it involve_ the use of various combi-
nations of equivalent area distributions obta:[ned from oblique cuts of
the total wing-body combination as a function of roll angle e. It is
theoretically more correct to handle the vari_Zion of the body area
independently of the wing area_ because for a body of revolution the area
distribution varies only with Machnumberand not with roll angle _.
This latter procedure was used for the result_ listed in figure 13 as
method 2. Experimental data were not availab]e at sonic-leading-edge
conditions; however, it is evident that both _heoretical methods tend to
overestimate the wave drag under these circumstances. Note in figure 13
that at a Machnumberof 3.00 the higher Reynclds numberdata agree better
with the theory. The results of method i agree better with the experi-
mental results at the higher supersonic speeds_so these theoretical
results were used in determining the theoretical lift-drag ratios presented
in the next section of the report.
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Aerodynamic Trends With Mach Number

Presented in figure 14 are summary plots of experimental and theo-

retical values of drag due to lift, aerodynamic-center location, lift-

curve slope, and maximum lift-drag ratios for the diamond model. At

supersonic speeds the lift-curve slope and the aerodynamic-center position

were computed with equations of linearized theory available in refer-

ence i or 14. The theoretical results at subsonic speeds were computed

from the curves of reference 15 which is based on a simplified lifting-

surface theory. The theory at M = 1.00 is based on low-aspect-ratio

theory (ref. i or 4) and is directly applicable only to delta wings.

Except for the zero-lift drag data, all the theoretical results are for

the wings alone without thickness. The friction drag was computed as

outlined in appendix D and the wave drag at zero lift was computed by

method i as discussed previously. The maximum lift-drag ratios were

predicted from a combination of these results.

2

The theoretical drag due to lift parameter CDi/C L , as shown in

figure 14(a), was computed as the reciprocal of the theoretical lift-

curve slope at all Mach numbers and therefore was without leading-edge

thrust. Also shown in figure 14(a) is the value, CDi/CL 2 = I/_A, for

minimum vortex drag due to lift. The results indicate that the sharp-

edged diamond model did have some leading-edge thrust at subsonic and

transonic Mach numbers; however, for Mach numbers greater than 2.50 the

experimental drag due to lift parameters approached the theory without

leading-edge thrust, and theory and experiment were in good agreement.

The subsonic tests were without the transition fixed, but the laminar-

flow region for the low-speed tests should be comparable to the 5 percent

allowed (1.13 in. streamwise).

The variation in aerodynamic-center position with Mach number

occurred primarily at transonic speeds as shown in figure 14(b). The

subsonic and supersonic levels were reasonably well predicted, although

the theoretical shift in aerodynamic-center position was less than that

obtained experimentally.

Probably the most interesting result of this investigation is the

good lift characteristics of the diamond plan form, in spite of the

prediction that the rear half of the wing would carry little lift accord-

ing to low-aspect-ratio theory. At M = 1.00 the experimental lift-

curve slope (fig. 14(d)) for the diamond model (0.0596) was higher than

the theoretical value for a similar aspect-ratio-2 delta wing (0.0548).

Similarly, for Mach numbers equal to 1.55 or greater (where data were

available) the experimental lift-curve slopes were equal to or greater

than the values predicted by linear theory (see fig. 14(d)).
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The maximum lift-drag ratios of figure 14(c) reflect the previously

discussed zero-lift wave-drag coefficients, the drag due to lift, and the

lift-curve slopes. The excellent transonic zero-lift wave-drag coeffi-

cients, some leading-edge thrust, and high lift-curve slopes all helped

to produce high maximum lift-drag ratios of 9.5 or better at transonic

speeds. At the higher supersonic speeds the agreement between theory and

experiment is very good, but probably would be improved even further for

a thinner wing and a body with less contouring.

CONCLUDING REMARKS

The zero-lift wave-drag coefficients of the diamond model were

essentially identical with the low values for its M = 1.00 equivalent

body up to the limit of the transonic tests (M = 1.20). From the peak

wave-drag coefficient near M = 1.00 there was a gradual decrease in wave-

Jrag coefficient up to M = 1.20. Near sonic leading-edge conditions of

the wing there was a rise in the wave-drag coefficient which was attribute_

in part to the body contouring but was primsrily attributed to the wing

geometry°

The diamond model had good lift characteristics, in spite of the

possibility that the rear half of the diamor_d wing would carry little

lift according to low-aspect-ratio theory. The experimental lift-curve

slopes obtained at supersonic speeds were equal to or greater than the

values predicted by linear theory. Similarly the aerodynamic center posi-

tion_ and the maximum lift-drag ratios were satisfactorily predicted at

supersonic speeds.

Ames Research Center

National Aeronautics and Space Adminis±ration

Moffett Field, Califo, July 8, 19Z9



APPENDIXA

SYMBOLS

A

An

b

2

CD

CD i

CL _

CDo

CL

Cm

cR

E'(m)

k

KA25

_max

aspect ratio

area distribution of the approximate Newtonian nose shape

coefficients determining the magnitude of the harmonics of a

Fourier sine series

semispan

drag coefficient

(All aerodynamic coefficients are based on the total wing

are a. )

slope of the curve of drag coefficient due to lift vs. lift

coefficient squared_ taken at the lift coefficient data point

nearest to that for _max

zero-lift drag coefficient

lift coefficient

lift-curve slope_ per deg

pitching-moment coefficient about body station 34.50 measured

from the body nose

center line_ or wing-root chord

mean aerodynamic chord

complete elliptic integral of the second kind

average height of transition grit

M = 1.00 equivalent body radii or area distribution

maximum lift-drag ratio

model length



i0

M

m

N

n

R

r

r o

rb

S

t

x

x 1

c R

V

V

VA 2

2_D o

0

A

(p

Mach number

cot A

total number of terms used in computing Z_Do

specific term or harmonic used to define an area distribution

Reynolds number

body radius

body maximum radius

body base radius

cross-sectional area

total wing area

wing semithickness

body station, measured aft from molel nose

aerodynamic center location, where x I = station measured from

leading edge of wing-root chord

volume

volume relative to a Sears-Haack body with minimum wave drag for
given volume and length (ref. 12)

angle of attack

zero-lift wave-drag coefficient

roll angle of a cutting plane tang, rot to a Mach cone as measured

between the z axis and the int,_.rsection of the cutting plane
with the yz plane

angle of sweepback of leading edge of wing

cotangent of sweep angle of plan-f_rm leading edge

cotangent of sweep angle of plan-form trailing edge

-z2x - i
transformation of the length x to radians, cos
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APPENDIXB

DESIGNPROCEDURE

As mentioned in the introduction to this report_ the general approach
was to seek the lowest possible wave drag at Machnumber 1.00 which was
consistent with a decreasing supersonic wave-drag coefficient. The basic
design concept was to concentrate the wing volume near the body center
line with a favorable or minimumdistortion of a selected area distri-
bution with changes in Machnumber. The distortions in the area distri-
butions are the result of obtaining equivalent area distributions from
oblique cuts tangent to the Mach cone according to the theory of
reference 7.

The diamond plan form selected was not considered as ideal from a
wave-drag standpoint_ but rather as a probable shape of interest to air-
plane designers. However_by selecting a plan form with zero taper ratio,
the wing volume would naturally tend to be concentrated near the body
center line. The symmetry of the diamond plan form justified its selec-
tion_ because the distortions of its area curves could also be made
symmetrical.

With the plan form specified the next step was to select a spanwise
thickness distribution. The thickness distribution selected was formed
by straight-line elements forming triangular spanwise sections (prepen-
_icular to the model center line) 3 which incidently results in a rigid
structural shape. Various cusp shapes were also considered which would
further concentrate the wing volume along the model center line or improve
the supersonic wave drag. Along this line of reasoning an idea of R. T.
Jones is simply illustrated in sketch (a), where it is shownthat the

Sele_

distribution _ -- /

voriotion in thicknessPossible

which would not chonge the

cross-sectionol oreo

Sketch(o)
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spanwise thickness distribution can be a!ter_d for some higher design

Mach number by adding zero area to the M = i_.00 area distribution. This

idea was not investigated very fully_ but an application with parabolic

arcs_ rather than the straight lines shown im sketch (a), was tried for

the di_aond plan form for Mach numbers up to 1.20. Little improvement in

computed wave drag was indicated over the straight-line thickness distri-

bution; so these more complex distributions were not justified for the

conditions considered. For higher Mach numbers or for other configu-

rations_ complex spanwise thickness distributions might be justified.

Other interesting types of wing thickness dintributions formed by straight
lines are _iscussed in reference 16.

The area distribution was next selected to help compensate for the

c_istortion of the wing area distribution with Mach number. The area

distribution was also selected to have an equivalent body with near opti-

mum theoretical zero-lift wave drag. The area curves considered in the

selection of the design area distribution are shown in figure 15. The

length and the maximum cross-sectional area were held constant_ although

a reduction in volume was allowed relative to the Sears-Haack body (mini-

mum transonic wave-drag body for given volum_ and length_ ref. 12). The

area-distribution curve for this Sears-Haack body is shown in the lower

left-hand corner of figure 15_ and the volum,_ ratio is of course equal to

1.00. The derivative of this area curve is _ompletely defined by the

amplitude of the second harmonic of a Fourier sine series. It may be

noted that all the other bodies had a reduction in volume and generally

an increase in drag. A reduction in zero-lift wave-drag coefficient was

computed for one area curve_ defined by two terms of a sine series_ shown

in the upper right-hand corner of figure 15. The upper left-hand curve

i_ that for a three-quarter power body_ an a?proximation of the Newtonian

nose shape (based on impact theory, ref. 17), reflected to form a closed

body. The theoretical zero-lift wave-drag c_efficients are quite similar

con_idering that the one area curve requires almost an infinite number of

te_n_ (N = 25 for ACDo sho_n) for definition while the other curves

required only one or two terms. The coeffic Lents are based on a wing

area of 800 square inches.

A preliminary analysis of these area distributions with the diamond

plan form was made to indicate how the theor _tical wave-drag coefficients

_¢ould vary with _ cos @ or roughly Mach n_ber as follows :
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Plan

form

Diamond

Diamond

Diamond

Diamond

Area distribution

(see fig. 15)

A.2 A3 A4 An>4

AN
1.696mj o 10 0

1.405 0 -.727 0

1.551 0 -.360 0

Drag coefficient, ACDo (N = 25)

cos e=0 F cos e=0.6633 _ cos e=3.3541

o.oo4o0.0034

.0025

.0026

.0023

o.0o23

.0059

.0053

.0053

iSears-Haack body, minimum wave drag for given volume and length from

linearized theory. See reference 12,

The _ cos @ value of 0.6633 represents the maximum cutting angle for

M = 1.20 and the value of _ cos @ = 0 represents all cutting angles for

M = 1.00. From these data it was indicated that the AN area distri-

bution with the diamond wing fully met the desired design objectives,

because the wave-drag coefficient is near optimum at M = 1.00 and

decreases with increased Mach number up to 1.20. For the highest value

of p cos 8 (3.3541) the theory was not relied upon for the preliminary

analysis, since the velocity components normal to the wing leading edge

were supersonic; howeve_the indicated wave-drag coefficient was reason-

ably low. Thus it was decided to use the (AN ) area distribution; however,

some modifications to the selected area distribution were made, as shown

in figure 16. To be consistent with the drag coefficients shown in

table V_ the AN distribution was replaced by the distribution defined

by 25 harmonics (A2s). Next the maximum cross-sectional area was corrected

to the original value (to maintain a fixed maximum cross-sectional area)

as shown in figure 16 to result in the KA2s area distribution which

was the design area curve used. This area distribution was cut off at

station 60_ with a curve with zero slope at the base and defined by 25

harmonics_ to permit sting-mounting of the models. These modifications

to the design area curve resulted in only a small change in the computed

wave-drag coefficient from the original value of 0.0034 to 0.00366 and

0.00369 for N = 25 smd N = 49, respectively.

With the area distribution and the wing spanwise thickness distri-

bution specified (triangular spanwise sections) the wing section could be

computed directly if the model was a wing alone configuration. For the

present investigation; forward and rearward body components were required

because the selected length of the area curve was greater thsm the wing

streamwise length. Also a minimum body size was specified in the central

region of the model to permit installation of the strain-gage balance.

For an actual airplane, similar body components would be a function of

the engine size or cockpit size. Temporarily ignoring the minimum body,

the next step in the model design was to compute the thickness distri-

bution of the wing along the model center line as shown in sketch(b).
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o

/_-- Wing alone, center-line section

_imum body

Bodyo,on,- / \ __

Body station x

Sketch (b)

The wing thickness at the leading and trailing edges of the root chord

approached infinity as the span approached zero. In the region where the

minimum body radii were greater than half the wing thickness, the combined

area distribution would be greater than that specified and thus the exposed

minimum-body area was removed from the given area distribution and the

wing thickness was recomputed. The convergerce was rapid because of the

small size of the exposed minimum-body area. The blending process was the

last step in the design. The root section of the wing was made to have

zero thickness at the leading and trailing edges_ and the thickness of

the wing and the radii of the body were varied or blended as shown in

sketch (c) to match the given area curve and to avoid abrupt changes in

/ Blendecl body \
-- Minimum body

BJended win(], ,: enter-line section

CR - ------ "_

Body stotion_ x

Sketch (c]

surface slope in the wing or the body componemts. The body blending of

course did not occur unless the wing extended outside the body. The

center line or root airfoil sections had the greater surface slopes and

the outboard sections were almost biconvex as may be seen in figure i and

interpreted from figure 3- The blended regioas of the final body are
also noted in table I.
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APPENDIX C

FIXING BOUNDARY-LAYER TRANSITION AND FRICTION DRAG

Confidence in the results of a zero-lift wave-drag investigation

can be obtained only if the variations in friction-drag coefficients with

Mach number are known or may be computed accurately. This is because the

experimental wave drag is determined by subtracting the estimated friction

drag from the measured zero-lift drag. The laminar and turbulent friction

drag were computed at M = 0 with zero heat transfer by the method of

reference 18. The variation of the friction-drag coefficients with Mach

number was computed from the following equations:

Laminar flow, reference 19

(cDfJ )M=0
i _ 2)-0 • 12

= + o.6 L-iM (l)

Turbulent flow (smooth surface), reference 20

CDf

CDf)M=0

i 7-1 2) -0.467+ _-M (2)

Turbulent flow (rough surface), reference 21

CDf

IM=0

i 7-1 2) -I- + r -_-M (3)

where the recovery factor, r : 0.86 and 7 = 1.4. This latter equation

is required for the wing area covered by a distributed roughness.

Because the extent of the laminar boundary-layer flow will vary with

Reynolds number and Mach number, a rigorous wave-drag comparison between

models can be obtained only if identical regions of laminar, turbulent,

and turbulent-rough flow are maintained at each test condition. Fixing

transition at high Mach numbers and low Reynolds numbers on wings is
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difficult as indicated in reference 22. Tke single-element roughness

used in reference 22 resulted in large drag (considered to be primarily

wave drag) and was not adequate in fixing transition at M = 3.53 and

Reynolds numbers per foot of approximately i_400_000 to 2,700_000. This

appenclix described what was done to fix trE_sition on the diamond model

at M = 3.50 and R per foot = 3_000,000, a_id what effect fixing transi-

tion had on the aerodynamic data.

SELECTION OF DISTRIBUTED ROUGHNESS

Prior experience rejected single-element roughness for the boundary-

layer trip and suggested the use of a distributed roughness. Based on

estimates of the short length of the lamin_:r-flow at subsonic speeds at

R per foot = 4_000_000 the following grit Rocation and extent was selected.

The _istributed roughness was formed by first spraying a thin coat of

cement and then spraying (at low pressure) the grit on a strip of the wing

0.22 inch wide and 1.13 inches rea_¢ar_ of the wing leading edge and the

body nose (measured in a streamwise direction). This resulted in fixing

the laminar region to 5 percent of the wing area and the rough region to

I percent of the wing area. Grit concentration was approximately 200 per

square inch and this value was used in the computation of friction drag.

The size of the grit was determined from p_eliminary tests in the o.u- by

7-_bot supersonic wind tunnel. The end of the laminar-flow region was

determined by the use of fluorine sublimatJon material as discussed in

reference 23. The grit finally selected h_d a mean height of 0.040 inch

and varied from about 0.030 to 0.050 inch. The grit location on the wing

and the grit size is indicated in the full-scale photograph of figure 17.

In figure 17 the painted white lines are located 3 inches apart in the

stres_m_ise direction. Laminar flow is indicated ahead of the grit, mixed

vortex and laminar flow are indicated by t_e parallel streaks, and fully

turbulent flow is indicated where the expanding black streaks coalesce.

In this preliminary test the grit was not ]laced close enough together

in a couple of regions as indicated by the extended white streaks repre-

senting localized regions of laminar flow. More uniform grit spacing
was used when the force _ata were obtained.

An example where transition was not considered to be fixed is sho_

in figure 18(a) for a Reynolds number per _oot of 1,000,000 (the white

fluorine crystals were not removed from the wing tip). The satisfactory

performance of the O.040-inch grit at R per foot = 3,000,000 and M = 3.50

is shown for comparison in figure 18(b)_ _he grit was sufficiently large

that it extended out of the boundary layer] however, if the grit were

located further rea_{ard, the length of th£ laminar-flow region would be

increased at high supersonic Mach numbers _nd would be decreased at

subsonic Mach numbers. Smaller sized grit in the same location, of a

size to lie within the boundary layer, did not fix transition. These

results indicate a need for further investigation of the parameters used
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in the suggested roughness Reynolds numbers recommended in references 24,

25, and 26. In particular the use of the curves of reference 26 for

Mach numbers of the order of 3.00 or greater does not apparently apply

for cases such as the present investigation where transition is desired

near the wing leading edge. The roughness Reynolds number for the case

of figure 18(b) is about 7,000 or 5 to 7 times greater than that indicated

by the curves of reference 26 for two-dimensional and three-dimensional

flow_ respectively. Perhaps the velocity and temperature used in the

roughness Reynolds number should be based on other boundary-layer param-

eters such as the momentum or displacement thickness which would better

group the results for roughness particles both within and partially

outside the boundary layer. The sublimation procedure used in the present

investigation to indicate transition (with the criteria that there should

be no laminar flow of consequence rearward of the grit) is probably more

conservative than the detection of spots of turbulence used in refer-

ences 24, 25, and 26.

EFFECT ON THE AERODYNAMIC DATA

Previously presented data of figure 7 indicated that fixing transi-

tion had very little effect on the lift or moment data and the greate_t

effect on the zero-lift drag coefficients. A summary plot of the zero-

lift drag coefficients for the diamond model is presente_ in figure 19.

The addition of the distributed roughness increased the zero-lift

drag coefficients at the higher supersonic Mach numbers to a lesser degree

than at subsonic Mach numbers (ACDo = 0.0013 to 0.0017, respectively).

Also the experimental increase in zero-lift drag is very nearly the same

as the computed increase in friction drag (note, in particular, the higher

Reynolds number data at M = 3.00). These two facts qualitatively indicate

that the grit did not produce wave drag in spite of its large size. The

increase in drag due to fixing transition with the grit was a reasonable

amount and was estimated quite well as shown in figure 19. With transi-

tion free tests, the line of transition between laminar and turbulent flow

as indicated by the sublimation material was quite irregular at subsonic

speeds so the uncertainty in predicting the laminar region is indicated

by the shaded region. The base-drag coefficients which were typical of

all bodies tested with or without wings are included in this figure for

completeness of all drag components involved at zero lift, and illustrate

that the body base may contribute to the zero-lift drag if the base is

not completely filled with jet exhaust.

Since the effect of fixing transition was not very large on the zero-

lift drag coefficients, the effect on the maximum lift-drag ratios was

not large as shown in figure 20. The greatest reduction in (L/D)ma x

was about 0.$ at subsonic speeds, and only 0.2 to 0.4 at supersonic speeds.
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TABLEI.- COORDINATESFORBODIES_INCfIES

M = 1.00

equivalent body

KA2s

X r

0

•379
.750

1.900
2. 250

3 •000

3.750
4.5OO
5.25o
6.000

6.7_0

7._oo
8. 250

9. 000

9.750
i0• 900

ii. 250

12. 000

12.75o
13.125
13.g75
i_.625
15.375
16.125

16.875

17.500
oIu. 000

19. 000

19.$79
20.625
21.375

22. 125

23.625
24. 375

25.125

26.625

27. 379

2,5.125
29.625

30.37_
31.125

0

.o75

.148

.258
•356

•449

.542

•623

•693

.761

.830

•9O3

-976

i.048
i. i16

1. 179

1.238

i. 296

1.353

i. 388

i. 44_

i.5o9
i.57o
1.630

1.688
1.733

i .762

i.823
1.$96

1.94S

2 •000

2.o_4
2. 166

2.221

2.275

2. 374

2 • 420

2 •464

2.555
2. 603

2.655

Diamond

model

X r

KA2s bo_y

M = 1.00

equivalent body

KAss

x - r

2.765

2.820

2.873

2.957

2.984

3.ooo
2.984

2.957

2.919

2.820

2.765

2.709

2.603

2.555
2.909
2.464

2.420

2.400

2.374

2.326
2.275

2.221

2.166

2. ii0

2.054

2. 000

i .948

1.896

I.$46

1.795

I. 747

1.725

I. 709

1.692

i. 677

I.662

i. 649

1.637

i. 629

i. 625

32.625

33.37>

34.129

35.625

36.375

37.500

38.625

39.375

a0.125

41.625

42.375

43.125

44.625

45.375

46.129

46.875

47.625

48.000

48.375

49.125

49.875

50.625

51.375

52.125

52.$75

53.625

54.375

55.125

55.875

56.625

57.30O

57.600

57.900

58.200

58.500

58.8oo

59.1oo

59.400

59.7oo

6o.ooo

19.36o 1.86o

20.000 Blended 1.874

21.O00 body 1.825

22.000 1.712

24.000 1.471

24.800 1.392

26.000 1.347

26.400 Von Karmo_ 1.360

28.000 ogive 1.405

29.600 1.447

31.200 1.4$7

32.800 1.522

33.600 1.539

Diamond

model

_' r

34. 400 Von Karman i. 554

3_.2oo
36.000

36.900

37.600

38.4oo
39.200

40.OO0

oglve 1.969

1.582

i.594

1.605

1.614

i.621
'I

1.625

Cylinder

91.000 r 1.629

52.000 Blended 1.697

53.000 body 1.730

5_.oo0 1.827

55.0o0 1.878

95.640 _-- 1.860

KAss body

] .
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TABLE II.- COORDINATES FOR DIAMOND WING_ INCHES

0 2.000 4.000 6.667 8•0OD 12.0OO 13•333 4.000 16.000 18.0OO

17.500 0

18.0OO •470

18.5oo .685
19.0oo •825

19.5oo .926 o
20.000 I•010 •202

20.500 i•O47 .349

21•000 1.070 •459

21•5OO 1.089 •545 0

22.000 1.098 .610 .122

23.000 1.086 .691 •296

24.000 1.O50 •727 •404 24.167=0

25.000 .996 •730 .465

25.5oo o
26.000 .925 •707 •490 •199 •054

27.0OO .$58 •677 •496 •139

28.000 .799 •647 •495 •292 •190

29.000 .755 .624 •492 .230

29.9OO 0

30.000 .724 .608 •492 •338 •261 .029

31.O00 •702 •598 •494 •286 •078

31.500

32.0OO .685 •_91 .496 •370 •307 .118

33.000 •677 •590 •502 .328 •153

33 •5oo

34.000 •670 .589 .508 •399 •345 .183

35.0OO .661 ._85 •510 •359 .208

35-50O
36.000 .640 .571 .502 .409 •363 .225

36.5OO

37.000 •612 .949 .486 .361 •239

37.500 •594 •535 •475 •396 •356 •238

38 .0OO .610 •547 •485 •360 •235

38.5OO

39.0OO •631 •_63 •495 .404 •358 .222

39. 500

40. OOO •643 •569 •496 •349 .202

41.0OO .649 .570 .492 •386 •334 •177

41._00
42•000 •650 •566 •4<%2 •315 •147

43• 000 .649 •560 •470 •351 •291 •112

43•5oo
44.0OO •655 .558 .461 •267 • 073

45• 0OO •667 •560 •454 •311 •240 • 027

45.5OO 0

46.000 .6_ 3 •564 •445 •208

47•000 .710 •975 •440 •259 •169

4_ •000 .744 .587 .431 •117

49.000 •787 .602 •417 •170 •046

49•5oo 50•833=0 0

50•000 .845 •620 •394

51.000 •924 .640 .356

51.5OO •970 •647 •323

52•000 I•020 •649 •278

52.5OO I. 048 .629 .210

53• 000 i •061 •590 •118

53.50o 1.065 .533 0

54.000 1.O60 •454

54• 500 1.045 .348

55.000 I.O11 .202

55•5OO •942 o
56.0OO .842

56.500 .712

57 •0OO •500

57•500 O

30.833=O

0

•055 .o24
•066

•129 .102

•132

•179 •156

• 173

•198 •178

•172

• 176 • i_3

.129

•124 •098

•063

•052 .022

)

44.167 =0

0

•020

•057

.C86

•iio

• 119

.i09

•085

.o55

•020

0

0

•017

•047

•059

•047

•017

0

19. 000

0

•016

.o3o
•016

0

20 •000
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(a) M = 3.5, R/ft = i,O00,0OO, k = 0.060 inch

(b) M = 3.5, R/ft = 3,000,000, k = 0.040 inch

A-23675. 1

Figure i_.- Conditions for which the fluorene sublimation material indi-

cated unsatisfactory and satisfactory fixing of the boundary-layer

transition.
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