57 research outputs found

    Pinwheel stabilization by ocular dominance segregation

    Full text link
    We present an analytical approach for studying the coupled development of ocular dominance and orientation preference columns. Using this approach we demonstrate that ocular dominance segregation can induce the stabilization and even the production of pinwheels by their crystallization in two types of periodic lattices. Pinwheel crystallization depends on the overall dominance of one eye over the other, a condition that is fulfilled during early cortical development. Increasing the strength of inter-map coupling induces a transition from pinwheel-free stripe solutions to intermediate and high pinwheel density states.Comment: 10 pages, 4 figure

    Coverage, Continuity and Visual Cortical Architecture

    Get PDF
    The primary visual cortex of many mammals contains a continuous representation of visual space, with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely separated in eutherian evolution. Here, we examine whether one of the most prominent models for the optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model generates representations which optimally trade of stimulus space coverage and map continuity. While this model has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have been obtained so far. We present a mathematical approach to analytically calculate the cortical representations predicted by the EN model for the joint mapping of stimulus position and orientation. We find that in all previously studied regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise. Our results demonstrate that optimization models for stimulus representations dominated by nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They question that visual cortical feature representations can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure

    Self-organization and the selection of pinwheel density in visual cortical development

    Full text link
    Self-organization of neural circuitry is an appealing framework for understanding cortical development, yet its applicability remains unconfirmed. Models for the self-organization of neural circuits have been proposed, but experimentally testable predictions of these models have been less clear. The visual cortex contains a large number of topological point defects, called pinwheels, which are detectable in experiments and therefore in principle well suited for testing predictions of self-organization empirically. Here, we analytically calculate the density of pinwheels predicted by a pattern formation model of visual cortical development. An important factor controlling the density of pinwheels in this model appears to be the presence of non-local long-range interactions, a property which distinguishes cortical circuits from many nonliving systems in which self-organization has been studied. We show that in the limit where the range of these interactions is infinite, the average pinwheel density converges to π\pi. Moreover, an average pinwheel density close to this value is robustly selected even for intermediate interaction ranges, a regime arguably covering interaction-ranges in a wide range of different species. In conclusion, our paper provides the first direct theoretical demonstration and analysis of pinwheel density selection in models of cortical self-organization and suggests to quantitatively probe this type of prediction in future high-precision experiments.Comment: 22 pages, 3 figure

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335

    Coordinated optimization of visual cortical maps (I) Symmetry-based analysis

    Get PDF
    In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of OP columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about an hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference.Comment: 90 pages, 16 figure

    Optimality of Human Contour Integration

    Get PDF
    For processing and segmenting visual scenes, the brain is required to combine a multitude of features and sensory channels. It is neither known if these complex tasks involve optimal integration of information, nor according to which objectives computations might be performed. Here, we investigate if optimal inference can explain contour integration in human subjects. We performed experiments where observers detected contours of curvilinearly aligned edge configurations embedded into randomly oriented distractors. The key feature of our framework is to use a generative process for creating the contours, for which it is possible to derive a class of ideal detection models. This allowed us to compare human detection for contours with different statistical properties to the corresponding ideal detection models for the same stimuli. We then subjected the detection models to realistic constraints and required them to reproduce human decisions for every stimulus as well as possible. By independently varying the four model parameters, we identify a single detection model which quantitatively captures all correlations of human decision behaviour for more than 2000 stimuli from 42 contour ensembles with greatly varying statistical properties. This model reveals specific interactions between edges closely matching independent findings from physiology and psychophysics. These interactions imply a statistics of contours for which edge stimuli are indeed optimally integrated by the visual system, with the objective of inferring the presence of contours in cluttered scenes. The recurrent algorithm of our model makes testable predictions about the temporal dynamics of neuronal populations engaged in contour integration, and it suggests a strong directionality of the underlying functional anatomy

    Model Cortical Association Fields Account for the Time Course and Dependence on Target Complexity of Human Contour Perception

    Get PDF
    Can lateral connectivity in the primary visual cortex account for the time dependence and intrinsic task difficulty of human contour detection? To answer this question, we created a synthetic image set that prevents sole reliance on either low-level visual features or high-level context for the detection of target objects. Rendered images consist of smoothly varying, globally aligned contour fragments (amoebas) distributed among groups of randomly rotated fragments (clutter). The time course and accuracy of amoeba detection by humans was measured using a two-alternative forced choice protocol with self-reported confidence and variable image presentation time (20-200 ms), followed by an image mask optimized so as to interrupt visual processing. Measured psychometric functions were well fit by sigmoidal functions with exponential time constants of 30-91 ms, depending on amoeba complexity. Key aspects of the psychophysical experiments were accounted for by a computational network model, in which simulated responses across retinotopic arrays of orientation-selective elements were modulated by cortical association fields, represented as multiplicative kernels computed from the differences in pairwise edge statistics between target and distractor images. Comparing the experimental and the computational results suggests that each iteration of the lateral interactions takes at least ms of cortical processing time. Our results provide evidence that cortical association fields between orientation selective elements in early visual areas can account for important temporal and task-dependent aspects of the psychometric curves characterizing human contour perception, with the remaining discrepancies postulated to arise from the influence of higher cortical areas

    Incremental grouping of image elements in vision

    Get PDF
    One important task for the visual system is to group image elements that belong to an object and to segregate them from other objects and the background. We here present an incremental grouping theory (IGT) that addresses the role of object-based attention in perceptual grouping at a psychological level and, at the same time, outlines the mechanisms for grouping at the neurophysiological level. The IGT proposes that there are two processes for perceptual grouping. The first process is base grouping and relies on neurons that are tuned to feature conjunctions. Base grouping is fast and occurs in parallel across the visual scene, but not all possible feature conjunctions can be coded as base groupings. If there are no neurons tuned to the relevant feature conjunctions, a second process called incremental grouping comes into play. Incremental grouping is a time-consuming and capacity-limited process that requires the gradual spread of enhanced neuronal activity across the representation of an object in the visual cortex. The spread of enhanced neuronal activity corresponds to the labeling of image elements with object-based attention
    corecore