36,216 research outputs found

    Platform-basin transitions and their role in Alpine-style collision systems : a comparative approach

    Get PDF
    CB acknowledges financial support from Optimus (Aberdeen) ltd. Petroceltic International plc are thanked for providing access to the subsurface data used in this study and for permission to publish images used here. Schlumberger are thanked for providing use of Petrel software under their academic agreement with the University of Aberdeen. RWHB thanks the organisers of the 12th Emile Argand Conference on Alpine Geological Studies for the invitation and financial support to participate in the Montgenevre workshop. Reviewers Enrico Tavarnelli, Thierry Dumont and editors Christian Sue and Stefan Schmid are all thanked for their comments that have significantly improved this contribution.Peer reviewedPublisher PD

    Quantum Nonlocality for a Mixed Entangled Coherent State

    Get PDF
    Quantum nonlocality is tested for an entangled coherent state, interacting with a dissipative environment. A pure entangled coherent state violates Bell's inequality regardless of its coherent amplitude. The higher the initial nonlocality, the more rapidly quantum nonlocality is lost. The entangled coherent state can also be investigated in the framework of 2×22\times2 Hilbert space. The quantum nonlocality persists longer in 2×22\times2 Hilbert space. When it decoheres it is found that the entangled coherent state fails the nonlocality test, which contrasts with the fact that the decohered entangled state is always entangled.Comment: 20 pages, 7 figures. To be published in J. Mod. Op

    Sensitivity of the structure of untripped mixing layers to small changes in initial conditions

    Get PDF
    An experimental study was conducted concerning the influence of small changes in initial conditions on the near- and far-field evolution of the three-dimensional structure of a plan mixing layer. A two-stream mixing layer with a velocity ratio of 0.6 was generated with the initial boundary layers on the splitter plate laminar and was nominally two-dimensional. The initial conditions were changed slightly by interchanging the high- and low-speed sides of the wind tunnel, while maintaining the same velocities, and hence velocity ratio. This resulted in small changes in the initial boundary layer properties, and the perturbations present in the boundary layers were interchanged between the high- and low-speed sides for the two cases. The results indicate that, even with this relatively minor change in initial conditions, the near-field regions of the two cases differ significantly. The peak Reynolds stress levels in the near-field differ by up to 100 percent, and this is attributed to a difference in the location of the initial spanwise vortex roll-up. In addition, the positions and shapes of the individual streamwise vortical structures differ for the two cases, although the overall structures differ for the two cases, although the overall qualitative description of these structures is comparable. The subsequent reorganization and decay of the streamwise vortical structures is very similar for the two cases. As a result, in the far field, both mixing layers achieve similar structure, yielding comparable growth rates, Reynolds stress, distribution, and spectral content

    Non-thermal Origin of the EUV and Soft X-rays from the Coma Cluster - Cosmic Rays in Equipartition with the Thermal Medium

    Get PDF
    The role of cosmic rays (CR) in the formation and evolution of clusters of galaxies has been much debated. It may well be related to other fundamental questions, such as the mechanism which heats and virializes the intracluster medium (ICM), and the frequency at which the ICM is shocked. There is now compelling evidence both from the cluster soft excess (CSE) and the `hard-tail' emissions at energies above 10 keV, that many clusters are luminous sources of inverse-Compton (IC) emission. This is the first direct measurement of cluster CR: the technique is free from our uncertainties in the ICM magnetic field, and is not limited to the small subset of clusters which exhibit radio halos. The CSE emitting electrons fall within a crucial decade of energy where they have the least spectral evolution, and where most of the CR pressure resides. However their survival times do not date them back to the relic CR population. By using the CSE data of the Coma cluster, we demonstrate that the CR are energetically as important as the thermal ICM: the two components are in pressure equiparition. Thus, contrary to previous expectations, CR are a dominant component of the ICM, and their origin and effects should be explored. The best-fit CR spectral index is in agreement with the Galactic value.Comment: ApJ accepted; 10 pages LaTeX; 2 figures and 1 table in PostScrip

    Quaternions, octonions and Bell-type inequalities

    Full text link
    Multipartite Bell-type inequalities are derived for general systems. They involve up to eight observables with arbitrary spectra on each site. These inequalities are closely related to the algebras of quaternions and octonions.Comment: 4 pages, no figure

    Violation of Bell's inequality using classical measurements and non-linear local operations

    Get PDF
    We find that Bell's inequality can be significantly violated (up to Tsirelson's bound) with two-mode entangled coherent states using only homodyne measurements. This requires Kerr nonlinear interactions for local operations on the entangled coherent states. Our example is a demonstration of Bell-inequality violations using classical measurements. We conclude that entangled coherent states with coherent amplitudes as small as 0.842 are sufficient to produce such violations.Comment: 6 pages, 5 figures, to be published in Phys. Rev.

    Slowly rotating voids in cosmology

    Get PDF
    We consider a spacetime consisting of an empty void separated from an almost Friedmann-Lema\^\i tre-Robertson-Walker (FLRW) dust universe by a spherically symmetric, slowly rotating shell which is comoving with the cosmic dust. We treat in a unified manner all types of the FLRW universes. The metric is expressed in terms of a constant characterizing the angular momentum of the shell, and parametrized by the comoving radius of the shell. Treating the rotation as a first order perturbation, we compute the dragging of inertial frames as well as the apparent motion of distant stars within the void. Finally, we discuss, in terms of in principle measurable quantities, 'Machian' features of the model.Comment: 21 pages, 5 figures, REVTex, accepted for publication in Class.Quant.Gravit

    Non-local two-photon correlations using interferometers physically separated by 35 meters

    Full text link
    An experimental demonstration of quantum correlations is presented. Energy and time entangled photons at wavelengths of 704 and 1310 nm are produced by parametric downconversion in KNbO3 and are sent through optical fibers into a bulk-optical (704 nm) and an all-fiber Michelson-interferometer (1310 nm), respectively. The two interferometers are located 35 meters aside from one another. Using Faraday-mirrors in the fiber-interferometer, all birefringence effects in the fibers are automatically compensated. We obtained two-photon fringe visibilities of up to 95 % from which one can project a violation of Bell's inequality by 8 standard deviations. The good performance and the auto-aligning feature of Faraday-mirror interferometers show their potential for a future test of Bell's inequalities in order to examine quantum-correlations over long distances.Comment: 9 pages including 3 postscript figures, to be published in Europhys. Let
    • 

    corecore