8,423 research outputs found

    Noncommutative QFT and Renormalization

    Get PDF
    Field theories on deformed spaces suffer from the IR/UV mixing and renormalization is generically spoiled. In work with R. Wulkenhaar, one of us realized a way to cure this disease by adding one more marginal operator. We review these ideas, show the application to ϕ3\phi^3 models and use the heat kernel expansion methods for a scalar field theory coupled to an external gauge field on a θ\theta-deformed space and derive noncommutative gauge field actions.Comment: To appear in the proceedings of the Workshop "Noncommutative Geometry in Field and String Theory", Corfu, 2005 (Greece

    Fuzzy Line Bundles, the Chern Character and Topological Charges over the Fuzzy Sphere

    Full text link
    Using the theory of quantized equivariant vector bundles over compact coadjoint orbits we determine the Chern characters of all noncommutative line bundles over the fuzzy sphere with regard to its derivation based differential calculus. The associated Chern numbers (topological charges) arise to be non-integer, in the commutative limit the well known integer Chern numbers of the complex line bundles over the 2-sphere are recovered.Comment: Latex2e, 13 pages, 1 figure. This paper continues and supersedes math-ph/0103003. v2: Typos correcte

    Novel Symmetry of Non-Einsteinian Gravity in Two Dimensions

    Full text link
    The integrability of R2R^2-gravity with torsion in two dimensions is traced to an ultralocal dynamical symmetry of constraints and momenta in Hamiltonian phase space. It may be interpreted as a quadratically deformed iso(2,1)iso(2,1)-algebra with the deformation consisting of the Casimir operators of the undeformed algebra. The locally conserved quantity encountered in the explicit solution is identified as an element of the centre of this algebra. Specific contractions of the algebra are related to specific limits of the explicit solutions of this model.Comment: 17 pages, TUW-92-04 (LaTeX

    Witten index, axial anomaly, and Krein's spectral shift function in supersymmetric quantum mechanics

    Get PDF
    A new method is presented to study supersymmetric quantum mechanics. Using relative scattering techniques, basic relations are derived between Krein’s spectral shift function, the Witten index, and the anomaly. The topological invariance of the spectral shift function is discussed. The power of this method is illustrated by treating various models and calculating explicitly the spectral shift function, the Witten index, and the anomaly. In particular, a complete treatment of the two‐dimensional magnetic field problem is given, without assuming that the magnetic flux is quantized

    Generic Black-Box End-to-End Attack Against State of the Art API Call Based Malware Classifiers

    Full text link
    In this paper, we present a black-box attack against API call based machine learning malware classifiers, focusing on generating adversarial sequences combining API calls and static features (e.g., printable strings) that will be misclassified by the classifier without affecting the malware functionality. We show that this attack is effective against many classifiers due to the transferability principle between RNN variants, feed forward DNNs, and traditional machine learning classifiers such as SVM. We also implement GADGET, a software framework to convert any malware binary to a binary undetected by malware classifiers, using the proposed attack, without access to the malware source code.Comment: Accepted as a conference paper at RAID 201

    Moral Obligation as Consideration in Contracts

    Get PDF

    Renormalisation of \phi^4-theory on noncommutative R^2 in the matrix base

    Full text link
    As a first application of our renormalisation group approach to non-local matrix models [hep-th/0305066], we prove (super-)renormalisability of Euclidean two-dimensional noncommutative \phi^4-theory. It is widely believed that this model is renormalisable in momentum space arguing that there would be logarithmic UV/IR-divergences only. Although momentum space Feynman graphs can indeed be computed to any loop order, the logarithmic UV/IR-divergence appears in the renormalised two-point function -- a hint that the renormalisation is not completed. In particular, it is impossible to define the squared mass as the value of the two-point function at vanishing momentum. In contrast, in our matrix approach the renormalised N-point functions are bounded everywhere and nevertheless rely on adjusting the mass only. We achieve this by introducing into the cut-off model a translation-invariance breaking regulator which is scaled to zero with the removal of the cut-off. The naive treatment without regulator would not lead to a renormalised theory.Comment: 26 pages, 44 figures, LaTe

    Geometry of the Grosse-Wulkenhaar Model

    Full text link
    We define a two-dimensional noncommutative space as a limit of finite-matrix spaces which have space-time dimension three. We show that on such space the Grosse-Wulkenhaar (renormalizable) action has natural interpretation as the action for the scalar field coupled to the curvature. We also discuss a natural generalization to four dimensions.Comment: 16 pages, version accepted in JHE
    corecore