495 research outputs found

    Improving coastal livelihoods through sustainable aquaculture practices - a report to the collaborative APEC Grouper Research and Development Network

    Get PDF
    Wild-harvest fisheries for live reef fish are largely over-exploited or unsustainable because of over-fishing and the widespread use of destructive fishing practices such as blast and cyanide fishing. Sustainable aquaculture – such as that of groupers – is one option for meeting the strong demand for reef fish, as well as potentially maintaining or improving the livelihoods of coastal communities. This report from a short study by the STREAM Initiative draws on secondary literature, media sources and four diverse case studies from at-risk reef fisheries, to frame a strategy for encouraging sustainable aquaculture as an alternative to destructive fishing practices. It was undertaken as a component of the APEC-funded project Collaborative Grouper Research and Development Network (FWG/01/2001) to better understand how recent technical advances in grouper culture and other complementary work – including that of the Asia-Pacific Marine Finfish Aquaculture Network (APMFAN) hosted by NACA – could better support the livelihoods of poor coastal communities. (PDF contains 49 pages

    Snacking on whole almonds for 6 weeks improves endothelial function and lowers LDL cholesterol but does not affect liver fat and other cardiometabolic risk factors in healthy adults: the ATTIS study, a randomized controlled trial

    Get PDF
    Background There is convincing evidence that daily whole almond consumption lowers blood LDL cholesterol concentrations, but effects on other cardiometabolic risk factors such as endothelial function and liver fat are still to be determined. Objectives We aimed to investigate whether isoenergetic substitution of whole almonds for control snacks with the macronutrient profile of average snack intakes, had any impact on markers of cardiometabolic health in adults aged 30–70 y at above-average risk of cardiovascular disease (CVD). Methods The study was a 6-wk randomized controlled, parallel-arm trial. Following a 2-wk run-in period consuming control snacks (mini-muffins), participants consumed either whole roasted almonds (n = 51) or control snacks (n = 56), providing 20% of daily estimated energy requirements. Endothelial function (flow-mediated dilation), liver fat (MRI/magnetic resonance spectroscopy), and secondary outcomes as markers of cardiometabolic disease risk were assessed at baseline and end point. Results Almonds, compared with control, increased endothelium-dependent vasodilation (mean difference 4.1%-units of measurement; 95% CI: 2.2, 5.9), but there were no differences in liver fat between groups. Plasma LDL cholesterol concentrations decreased in the almond group relative to control (mean difference −0.25 mmol/L; 95% CI: −0.45, −0.04), but there were no group differences in triglycerides, HDL cholesterol, glucose, insulin, insulin resistance, leptin, adiponectin, resistin, liver function enzymes, fetuin-A, body composition, pancreatic fat, intramyocellular lipids, fecal SCFAs, blood pressure, or 24-h heart rate variability. However, the long-phase heart rate variability parameter, very-low-frequency power, was increased during nighttime following the almond treatment compared with control (mean difference 337 ms2; 95% CI: 12, 661), indicating greater parasympathetic regulation. Conclusions Whole almonds consumed as snacks markedly improve endothelial function, in addition to lowering LDL cholesterol, in adults with above-average risk of CVD. This trial was registered at clinicaltrials.gov as NCT02907684

    On deciding to have a lobotomy:either lobotomies were justified or decisions under risk should not always seek to maximise expected utility

    Get PDF
    In the 1940s and 1950s thousands of lobotomies were performed on people with mental disorders. These operations were known to be dangerous, but thought to offer great hope. Nowadays, the lobotomies of the 1940s and 1950s are widely condemned. The consensus is that the practitioners who employed them were, at best, misguided enthusiasts, or, at worst, evil. In this paper I employ standard decision theory to understand and assess shifts in the evaluation of lobotomy. Textbooks of medical decision making generally recommend that decisions under risk are made so as to maximise expected utility (MEU) I show that using this procedure suggests that the 1940s and 1950s practice of psychosurgery was justifiable. In making sense of this finding we have a choice: Either we can accept that psychosurgery was justified, in which case condemnation of the lobotomists is misplaced. Or, we can conclude that the use of formal decision procedures, such as MEU, is problematic

    Long term follow up of high risk children: who, why and how?

    Get PDF
    Background: Most babies are born healthy and grow and develop normally through childhood. There are, however, clearly identifiable high-risk groups of survivors, such as those born preterm or with ill-health, who are destined to have higher than expected rates of health or developmental problems, and for whom more structured and specialised follow-up programs are warranted. Discussion This paper presents the results of a two-day workshop held in Melbourne, Australia, to discuss neonatal populations in need of more structured follow-up and why, in addition to how, such a follow-up programme might be structured. Issues discussed included the ages of follow-up, and the personnel and assessment tools that might be required. Challenges for translating results into both clinical practice and research were identified. Further issues covered included information sharing, best practice for families and research gaps. Summary A substantial minority of high-risk children has long-term medical, developmental and psychological adverse outcomes and will consume extensive health and education services as they grow older. Early intervention to prevent adverse outcomes and the effective integration of services once problems are identified may reduce the prevalence and severity of certain outcomes, and will contribute to an efficient and effective use of health resources. The shared long-term goal for families and professionals is to work toward ensuring that high risk children maximise their potential and become productive and valued members of society. Electronic supplementary material The online version of this article (doi:10.1186/1471-2431-14-279) contains supplementary material, which is available to authorized users

    Quantification of the Temporal Evolution of Collagen Orientation in Mechanically Conditioned Engineered Cardiovascular Tissues

    Get PDF
    Load-bearing soft tissues predominantly consist of collagen and exhibit anisotropic, non-linear visco-elastic behavior, coupled to the organization of the collagen fibers. Mimicking native mechanical behavior forms a major goal in cardiovascular tissue engineering. Engineered tissues often lack properly organized collagen and consequently do not meet in vivo mechanical demands. To improve collagen architecture and mechanical properties, mechanical stimulation of the tissue during in vitro tissue growth is crucial. This study describes the evolution of collagen fiber orientation with culture time in engineered tissue constructs in response to mechanical loading. To achieve this, a novel technique for the quantification of collagen fiber orientation is used, based on 3D vital imaging using multiphoton microscopy combined with image analysis. The engineered tissue constructs consisted of cell-seeded biodegradable rectangular scaffolds, which were either constrained or intermittently strained in longitudinal direction. Collagen fiber orientation analyses revealed that mechanical loading induced collagen alignment. The alignment shifted from oblique at the surface of the construct towards parallel to the straining direction in deeper tissue layers. Most importantly, intermittent straining improved and accelerated the alignment of the collagen fibers, as compared to constraining the constructs. Both the method and the results are relevant to create and monitor load-bearing tissues with an organized anisotropic collagen network

    3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings

    Get PDF
    RATIONALE: 3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been interpreted as neurotoxicity. Whether such 5-HT deficits reflect neuronal damage is a matter of ongoing debate. OBJECTIVE: The present paper reviews four specific issues related to the hypothesis of MDMA neurotoxicity in rats: (1) the effects of MDMA on monoamine neurons, (2) the use of “interspecies scaling” to adjust MDMA doses across species, (3) the effects of MDMA on established markers of neuronal damage, and (4) functional impairments associated with MDMA-induced 5-HT depletions. RESULTS: MDMA is a substrate for monoamine transporters, and stimulated release of 5-HT, NE, and DA mediates effects of the drug. MDMA produces neurochemical, endocrine, and behavioral actions in rats and humans at equivalent doses (e.g., 1–2 mg/kg), suggesting that there is no reason to adjust doses between these species. Typical doses of MDMA causing long-term 5-HT depletions in rats (e.g., 10–20 mg/kg) do not reliably increase markers of neurotoxic damage such as cell death, silver staining, or reactive gliosis. MDMA-induced 5-HT depletions are accompanied by a number of functional consequences including reductions in evoked 5-HT release and changes in hormone secretion. Perhaps more importantly, administration of MDMA to rats induces persistent anxiety-like behaviors in the absence of measurable 5-HT deficits. CONCLUSIONS: MDMA-induced 5-HT depletions are not necessarily synonymous with neurotoxic damage. However, doses of MDMA which do not cause long-term 5-HT depletions can have protracted effects on behavior, suggesting even moderate doses of the drug may pose risks

    Irish Cardiac Society - Proceedings of the Annual General Meeting held November 1993

    Get PDF

    Global Analysis of Quorum Sensing Targets in the Intracellular Pathogen Brucella melitensis 16 M

    Get PDF
    Many pathogenic bacteria use a regulatory process termed quorum sensing (QS) to produce and detect small diffusible molecules to synchronize gene expression within a population. In Gram-negative bacteria, the detection of, and response to, these molecules depends on transcriptional regulators belonging to the LuxR family. Such a system has been discovered in the intracellular pathogen Brucella melitensis, a Gram-negative bacterium responsible for brucellosis, a worldwide zoonosis that remains a serious public health concern in countries were the disease is endemic. Genes encoding two LuxR-type regulators, VjbR and BabR, have been identified in the genome of B. melitensis 16 M. A DeltavjbR mutant is highly attenuated in all experimental models of infection tested, suggesting a crucial role for QS in the virulence of Brucella. At present, no function has been attributed to BabR. The experiments described in this report indicate that 5% of the genes in the B. melitensis 16 M genome are regulated by VjbR and/or BabR, suggesting that QS is a global regulatory system in this bacterium. The overlap between BabR and VjbR targets suggest a cross-talk between these two regulators. Our results also demonstrate that VjbR and BabR regulate many genes and/or proteins involved in stress response, metabolism, and virulence, including those potentially involved in the adaptation of Brucella to the oxidative, pH, and nutritional stresses encountered within the host. These findings highlight the involvement of QS as a major regulatory system in Brucella and lead us to suggest that this regulatory system could participate in the spatial and sequential adaptation of Brucella strains to the host environment.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The local and systemic response to SARS-CoV-2 infection in children and adults

    Get PDF
    While a substantial proportion of adults infected with SARS-CoV-2 progress to develop severe disease, children rarely manifest respiratory complications. Therefore, understanding differences in the local and systemic response to SARS-CoV-2 infection between children and adults may provide important clues about the pathogenesis of SARS-CoV-2 infection. To address this, we first generated a healthy reference multi-omics single cell data set from children (n=30) in whom we have profiled triple matched samples: nasal and tracheal brushings and PBMCs, where we track the developmental changes for 42 airway and 31 blood cell populations from infancy, through childhood to adolescence. This has revealed the presence of naive B and T lymphocytes in neonates and infants with a unique gene expression signature bearing hallmarks of innate immunity. We then contrast the healthy reference with equivalent data from severe paediatric and adult COVID-19 patients (total n=27), from the same three types of samples: upper and lower airways and blood. We found striking differences: children with COVID-19 as opposed to adults had a higher proportion of innate lymphoid and non-clonally expanded naive T cells in peripheral blood, and a limited interferon-response signature. In the airway epithelium, we found the highest viral load in goblet and ciliated cells and describe a novel inflammatory epithelial cell population. These cells represent a transitional regenerative state between secretory and ciliated cells; they were found in healthy children and were enriched in paediatric and adult COVID-19 patients. Epithelial cells display an antiviral and neutrophil-recruiting gene signature that is weaker in severe paediatric versus adult COVID-19. Our matched blood and airway samples allowed us to study the spatial dynamics of infection. Lastly, we provide a user-friendly interface for this data1 as a highly granular reference for the study of immune responses in airways and blood in children
    corecore