218,373 research outputs found
Photoproduction of Pentaquark in Feynman and Regge Theories
Photoproduction of the Theta+ pentaquark on the proton is analyzed by using
an isobar and a Regge models. The difference in the calculated total cross
section is found to be more than two orders of magnitude for a hadronic form
factor cut-off Lambda > 1 GeV. Comparable results would be obtained for 0.6 <
Lambda < 0.8 GeV. We also calculate contribution of the Theta+ photoproduction
to the GDH integral. By comparing with the current phenomenological
calculation, it is found that the GDH sum rule favors the result obtained from
Regge approach and isobar model with small Lambda.Comment: 5 pages, 5 figures, submitted to Phys.Rev.C as a Rapid Communicatio
On the efficiency of estimating penetrating rank on large graphs
P-Rank (Penetrating Rank) has been suggested as a useful measure of structural similarity that takes account of both incoming and outgoing edges in ubiquitous networks. Existing work often utilizes memoization to compute P-Rank similarity in an iterative fashion, which requires cubic time in the worst case. Besides, previous methods mainly focus on the deterministic computation of P-Rank, but lack the probabilistic framework that scales well for large graphs. In this paper, we propose two efficient algorithms for computing P-Rank on large graphs. The first observation is that a large body of objects in a real graph usually share similar neighborhood structures. By merging such objects with an explicit low-rank factorization, we devise a deterministic algorithm to compute P-Rank in quadratic time. The second observation is that by converting the iterative form of P-Rank into a matrix power series form, we can leverage the random sampling approach to probabilistically compute P-Rank in linear time with provable accuracy guarantees. The empirical results on both real and synthetic datasets show that our approaches achieve high time efficiency with controlled error and outperform the baseline algorithms by at least one order of magnitude
Electronic structure and superconductivity of BiS2-based compounds LaO1-xFxBiS2
Using the density-functional perturbation theory with structural
optimization, we investigate the electronic structure, phonon spectra, and
superconductivity of BiS2-based layered compounds LaO1-xFxBiS2. For
LaO0.5F0.5BiS2, the calculated electron-phonon coupling constant is equal to
lambda = 0.8, and obtained Tc = 9.1 K is very close to its experimental value,
indicating that it is a conventional electron-phonon superconductor
Efficacy of crustal superfluid neutrons in pulsar glitch models
In order to assess the ability of purely crust-driven glitch models to match
the observed glitch activity in the Vela pulsar, we conduct a systematic
analysis of the dependence of the fractional moment of inertia of the inner
crustal neutrons on the stiffness of the nuclear symmetry energy at saturation
density . We take into account both crustal entrainment and the fact that
only a fraction of the core neutrons may couple to the crust on the
glitch-rise timescale. We use a set of consistently-generated crust and core
compositions and equations-of-state which are fit to results of low-density
pure neutron matter calculations. When entrainment is included at the level
suggested by recent microscopic calculations and the core is fully coupled to
the crust, the model is only able to account for the Vela glitch activity for a
1.4 star if the equation of state is particularly stiff MeV.
However, an uncertainty of about 10\% in the crust-core transition density and
pressure allows for the Vela glitch activity to be marginally accounted for in
the range MeV consistent with a range of experimental results.
Alternatively, only a small amount of core neutrons need be involved. If less
than 50\% of the core neutrons are coupled to the crust during the glitch, we
can also account for the Vela glitch activity using crustal neutrons alone for
EOSs consistent with the inferred range of . We also explore the possibility
of Vela being a high-mass neutron star, and of crustal entrainment being
reduced or enhanced relative to its currently predicted values.Comment: 10 pages, 6 figure
Space Charge Behaviour in Oil-Paper Insulation with Different Aging Condition
Oil-paper insulation system is widely used in power transformers and cables. The dielectric properties of oilpaper insulation play an important role in the reliable operation of power equipment. Oil-paper insulation degrades under a combined stress of thermal (the most important factor), electrical, mechanical, and chemical stresses during routine operations, which has great effect on the dielectric properties of oil-paper insulation [1]. Space charge in oil-paper insulation has a close relation to its electrical performance [1]. In this paper, space charge behaviour of oil-paper insulation sample with three different ageing conditions (aged for 0, 35 and 77 days) was investigated using the pulsed electroacoustic (PEA) technique. The influence of aging on the space charge dynamics behaviour was analysed. Results show that aging has great effect on the space charge dynamics of oil-paper insulation. The homocharge injection takes place under all three aging conditions above. Positive charges tend to accumulate in the sample, and increase with the oil-paper insulation sample deterioration. The time to achieve the maximum injection charge density is 30s, 2min and 10min for oil-paper insulation sample aged for 0, 35 and 77 days, respectively. The maximum charge density injected in the sample aged for 77 days is more than two times larger than the initial sample. In addition, the charge decay speed becomes much slower with the aging time increase. There is an exponential relationship between the total charge amount and the decay time. The decay time constant ? increases with the increasing deterioration condition of the oil-paper insulation sample. The ? value may be used to reflect the aging status of oil-paper insulation
- …