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Abstract. P-Rank (Penetrating Rank) has been suggested as a useful measure
of structural similarity that takes account of both incoming and outgoing edges
in ubiquitous networks. Existing work often utilizes memoization to compute P-
Rank similarity in an iterative fashion, which requires cubic time in the worst
case. Besides, previous methods mainly focus on the deterministic computation
of P-Rank, but lack the probabilistic framework that scales well for large graphs.
In this paper, we propose two efficient algorithms for computing P-Rank on large
graphs. The first observation is that a large body of objects in a real graph usually
share similar neighborhood structures. By merging such objects with an explicit
low-rank factorization, we devise a deterministic algorithm to compute P-Rank
in quadratic time. The second observation is that by converting the iterative form
of P-Rank into a matrix power series form, we can leverage the random sam-
pling approach to probabilistically compute P-Rank in linear time with provable
accuracy guarantees. The empirical results on both real and synthetic datasets
show that our approaches achieve high time efficiency with controlled error and
outperform the baseline algorithms by at least one order of magnitude.

1 Introduction

Structural similarity search that ranks objects based on graph hyperlinks is a major tool
in the fields of data mining. This problem is also known as link-based analysis, and it has
become popularized in a plethora of applications, such as nearest neighbor search [26],
graph clustering [27], and collaborative filtering [9]. For example, Figure 1 depicts a
recommender system, in which person (A) and (B) purchase itemsets {egg, pancake,
sugar} and {egg, pancake, flour}, respectively. We want to identify similar users and
similar items.

Existing link-based approaches usually take advantage of graph structures to mea-
sure similarity between vertices. Each object (e.g., person, or item) can be regarded as a
vertex, and a hyperlink (e.g., purchase relationship) as a directed edge in a graph. Then
a scoring rule is defined to compute similarity between vertices. Consider the well-
known SimRank scoring rule [18] “two vertices are similar if they are referenced (have
incoming edges) from similar vertices” in Figure 1. We can see that the items sugar and
egg are similar as they are purchased by the same person (A). In spite of its worldwide
popularity [1,4,6,18,24,27], SimRank has the “limited information problem” — it on-
ly takes incoming edges into account while ignoring outgoing links [26]. For instance,
person (A) and (B) have the SimRank score zero as they have no incoming edges. This
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Fig. 2: Merge the nodes having the same
neighborhood

is counter-intuitive since the similarity between person (A) and (B) also depends on the
similarity of their purchased products. To address this issue, Zhao et al. [26] proposed
to use P-Rank similarity to effectively incorporate both in- and out-links. Since then,
P-Rank has attracted growing attention (e.g., [2, 13, 17, 21]), and it can be widely used
to any ubiquitous domain where SimRank is applicable, such as social graphs [2], and
publication networks [13]. The intuition behind P-Rank is an improved version of Sim-
Rank: “two distinct vertices are similar if (a) they are referenced by similar vertices,
and (b) they reference similar vertices”. In contrast with SimRank, P-Rank is a general
framework for exploiting structural similarity of the Web, and has the extra benefit of
taking account of both incoming and outgoing links. As an example in Figure 1, person
(A) and (B) are similar in the context of P-Rank.

Nonetheless, existing studies on P-Rank have the following problems. Firstly, it is
rather time-consuming to iteratively compute P-Rank on large graphs. Previous meth-
ods [17, 26] deploy a fixed-point iterative paradigm for P-Rank computation. While
these methods often attain good accuracy, they do not scale well for large graphs since
they need to enumerate all n2 vertex-pairs per iteration if there are n vertices in a graph.
The most efficient existing technique using memoization for SimRank computation [18]
can be applied to P-Rank in a similar fashion, but still needs O(Kn3) time. The recent
dramatic increase in network scale highlights the need for a new method to handle large
volumes of P-Rank computation with low time complexity and high accuracy.

Secondly, it is a big challenge to estimate the error when approximation approaches
are leveraged for computing P-Rank. Zhao et al. [26] proposed the radius- and category-
based pruning techniques to improve the computation of P-Rank to O(Kd2n2), with d
being the average degree in a graph. However, this heuristic method does not warrant the
accuracy of pruning results. For certain applications like ad-hoc top-k nearest neighbor
search, fast speed is far more important than accuracy; it is desirable to sacrifice a little
accuracy (with controlled error) for accelerating the computation.

In this paper, we address the optimization issue of P-Rank. We have an observation
that many real-world graphs are low rank and sparse, such as the Web [18], bibliograph-
ic network [9], and social graph [14]. Based on this, we devise two efficient algorithms
(a) to deterministically compute P-Rank in an off-line fashion, and (b) to probabilis-
tically estimate P-Rank with controlled error in an on-line fashion. For deterministic
computation, we observe that a large body of vertices in a real graph usually have the
similar neighborhood structures, and some may even share the same common neighbor-
hoods (e.g., we notice in Figure 1 that the products egg and pancake are purchased by
the same users—their neighborhoods are identical. Therefore, we can merge egg and
pancake into one vertex, as illustrated in Figure 2). Due to these redundancy, we have
an opportunity to “merge” these similar vertices into one vertex. To this end, we utilize
a low-rank factorization to eliminate such redundancy. However, it is hard to develop
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an efficient algorithm and give an error estimate for low-rank approximation. For prob-
abilistic computation, we notice that the iterative form of P-Rank can be characterized
as a matrix power series form. In light of this, we adopt a random sampling approach to
further improve the computation of P-Rank in linear time with provable guarantee.

Contributions. In summary, we make the following contributions.
(1) We characterize the P-Rank similarity as two equivalent matrix forms: The matrix

inversion form of P-Rank lays a foundation for deterministic optimization, and the
power series form for probabilistic computation. (Section 3).

(2) We observe that many vertices in a real graph have neighborhood structure redun-
dancy. By eliminating the redundancy, we devise an efficient deterministic algorith-
m based on the matrix inversion form of P-Rank to optimize the P-Rank computa-
tion, yielding quadratic-time in the number of vertices (Section 4).

(3) We base a sampling approach on the power series form of P-Rank to further speed
up the computation of P-Rank probabilistically, achieving linear-time with con-
trolled accuracy (Section 5).

(4) Using both real and synthetic datasets, we empirically show that (a) our determinis-
tic algorithm outperforms the baseline algorithms by almost one order of magnitude
in time and (b) our probabilistic algorithm runs much faster than the deterministic
method with controlled error (Section 6).

2 Preliminaries

Let G = (V, E) be a directed graph with vertex set V and edge set E . For a vertex u ∈ V ,
we denote by I(u) and O(u) the in-neighbor set and out-neighbor set of u respectively,
|I (u)| and |O (u)| the cardinalities of I (u) and O (u) respectively.

The P-Rank similarity between vertices u and v, denoted by s(u, v), is defined as
(a) s(u, u) = 1; (b) when u ̸= v,

s (u, v) =
λ · Cin

|I (u)| |I (v)|
∑

i∈I(u)

∑
j∈I(v)

s (i, j)

︸ ︷︷ ︸
in-link part

+
(1− λ) · Cout

|O (u)| |O (v)|
∑

i∈O(u)

∑
j∈O(v)

s (i, j)

︸ ︷︷ ︸
out-link part

, (1)

where λ ∈ [0, 1] is a weighting factor balancing the contribution of in- and out-links;
Cin and Cout ∈ (0, 1) are damping factors for in- and out-link directions, respectively.

Note that either I(·) or O(·) can be an empty set. To prevent division by zero, the
definition in Eq.(1) also assumes that (a) in-link part= 0 if I(u) or I(v) = ∅, and (b)
out-link part= 0 if O(u) or O(v) = ∅.

P-Rank Matrix Formula. Let Q be the backward transition matrix of G, whose
entry qi,j = 1/|I(i)| if ∃ an edge (j, i) ∈ E , and 0 otherwise; and let P be the forward
transition matrix of G, whose entry pi,j = 1/|O(i)| if ∃ an edge (i, j) ∈ E , and 0
otherwise. By virtue of our prior work [17], the P-Rank equation (1) then equivalently
takes the simple form

S = λ · Cin ·Q · S ·QT + (1− λ) · Cout ·P · S ·PT + In, (2)

where S is the similarity matrix whose entry si,j equals the P-Rank score s(i, j), and
In is the n×n identity matrix 1, ensuring that each vertex is maximally similar to itself.

1 Throughout the paper, we denote by n the number of vertices in G.
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3 Two Forms of P-Rank Solution

In this section, we present two closed-form expressions of the P-Rank similarity matrix
S, with the aim to optimize P-Rank computation in the next sections.

Our key observation is that the P-Rank matrix formula Eq.(2) is a linear equation.
This linearity can be made more explicit by utilizing the matrix-to-vector operator that
converts a matrix into a vector by staking its columns one by one. This operator, denoted
vec, satisfies the basic property vec(A · X · B) = (BT ⊗ A) · vec(X) in which ⊗
denotes the Kronecker product. (For a proof of this property, see Theorem 13.26 in [12,
p.147].) Applying this property to Eq.(2) we immediately obtain x = M ·x+b, where
x = vec(s), M = λ ·Cin · (Q⊗Q)+(1− λ) ·Cout · (P⊗P) , and b = vec(In). The
recursive form of x naturally leads itself into a power series form x =

∑∞
i=0 M

i · b.
Combining this observation with Eq.(2), we deduce the following lemma.

Lemma 1 (Power Series Form). The P-Rank matrix formula Eq.(2) has the following
algebraic solution

vec (S) =

∞∑
i=0

[λ · Cin · (Q⊗Q) + (1− λ) · Cout · (P⊗P)]i · vec (In) . (3)

Lemma 1 describes the power series form of the P-Rank similarity. This result will be
used to justify our random sampling approach for estimating P-Rank (in Section 5).
One caveat is that the convergence of

∑
i M

i · b is guaranteed only if ∥M∥∞ < 1
(see [7, p.301]), where ∥ ⋆ ∥∞ is the ∞-matrix norm 2. This is true for Eq.(3) because
λ ∈ [0, 1] and Cin, Cout ∈ (0, 1) imply that

∥M∥∞ ≤ λ ·
<1︷︸︸︷
Cin ·

=1︷ ︸︸ ︷
∥Q⊗Q∥∞ +(1− λ) ·

<1︷︸︸︷
Cout ·

=1︷ ︸︸ ︷
∥P⊗P∥∞ < λ+ (1− λ) = 1.

Another explicit expression for the P-Rank similarity comes from the observation
that

∑
i M

i = (I−M)
−1 whenever ∥M∥∞ < 1. Applying this observation to Lemma

1 yields the matrix inversion form of the P-Rank similarity.

Lemma 2 (Matrix Inversion Form). The P-Rank similarity matrix S in Eq.(2) can be
rewritten as

vec (S) = [In2 − λCin (Q⊗Q)− (1− λ)Cout (P⊗P)]−1 · vec (In) . (4)

The utility of Lemma 2 lies in the observation that computing S can be converted in-
to a matrix inversion computation. Due to the huge size, the straightforward way of
computing such matrix inversion is prohibitively expensive; nevertheless, optimization
techniques in the next section will significantly improve the computational efficiency.

4 An Algorithm for P-Rank Deterministic Computation

In light of the matrix inversion form in Lemma 2, we now focus on deterministic opti-
mization of P-Rank computation. In this section, we show the following result.

2 The∞-matrix norm is simply the maximum absolute row sum of the matrix.
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Theorem 1. For any graph G, given a low-rank υ (≤ r), it is in O
(
υn2 + υ6

)
time

and O(υ ·max{υ3, n}) space to compute P-Rank similarity up to an additive error of
ϵυ ≤ λCinσ1συ+1+(1−λ)Coutσ̄1σ̄υ+1

1−λCin−(1−λ)Cout
r, where r (≪ n) is the rank of the adjacency matrix,

σi and σ̄i (i = 1, υ + 1) are the i-th largest singular values of Q and P respectively.

In particular, setting υ = r gives the following corollary.

Corollary 1. The exact P-Rank similarity can be solvable in O
(
rn2 + r6

)
time and

O(r ·max{r3, n}) space.

(A sketch proof of Theorem 1 and Corollary 1 will be provided after some discus-
sions. See [23] for a full version of proof.)

The key observation behind P-Rank optimization is that vertices in a real graph usu-
ally have a large number of common neighborhoods (e.g., many users often have the
similar preferences in a recommender system). Hence, r is typically much smaller than
n in practice. The main idea is (a) to devise a rank-r update formula for efficiently com-
puting the matrix inversion in Eq.(4), and (b) to use a rank-r factorization for merging
the vertices that have the same neighborhoods into one vertex.

To prove Theorem 1, we first devise a low-rank update formula of matrix inversion.
We then present an algorithm for P-Rank computation with the desired properties.

Lemma 3. Let In be an n×n identity matrix, Ui and Vi be n× r matrices (r ≪ n),
and Σi be r × r matrices (i = 1, 2). Then the following identity holds.

(
In −U1Σ1V

T
1 −U2Σ2V

T
2

)−1
= In +

(
U1 U2

)(Σ1
−1 −VT

1 U1 −VT
1 U2

−VT
2 U1 Σ2

−1 −VT
2 U2

)−1 (
VT

1

VT
2

)
(5)

(For the interest of space, please refer to [23] for a detailed proof. Lemma 3 is an
extension of the Woodbury matrix identity [12, p.48]. )

As opposed to O
(
n3

)
-time of the conventional matrix inversion [7], Lemma 3 pro-

vides an efficient way of computing (In −U1Σ1V
T
1 −U2Σ2V

T
2 )

−1 in O(n2r+r2n+
r3) time (r ≪ n) via the RHS of Eq.(5). As depicted in Figure 3, the performance gain
is achieved by the observation that U1Σ1V

T
1 and U2Σ2V

T
2 are low rank.

One immediate consequence of Lemma 3 is the optimization of the P-Rank matrix
inversion form. We have an observation that most real graphs are low rank (e.g., the
web graph [18], bibliographic network [9], who-trusts-whom social network [14]).
By applying a reduced singular value decomposition [19] 3 (as depicted in Figure 4),

3 Given an matrix X (with its rank r) and an integer υ (≤ r), the reduced singular value decom-
position of X is the factorization Xυ = Uυ ·Συ ·Vυ

T s.t. ∥X−Xυ∥2 = συ+1 is minimal,
where Uυ and Vυ are n× υ column orthonormal matrices, and Σ , diag (σ1, σ2, · · · , συ)
is an υ × υ diagonal matrix whose entries are the singular values of X.
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Algorithm 1: DE P-Rank
Input : web graph G = (V, E),

weighting factor λ,
damping factors Cin and Cout,
low rank υ.

Output: similarity matrix S, and
approximation error ϵυ .

1 initialize the adjacency matrix A of G.
2 Q← RowNorm(AT ), P← RowNorm(A).
3 if υ is empty then υ ← Rank (A).
4 [UQ,ΣQ,VQ;σ1, συ+1]← RSVD (Q, υ),
[UP,ΣP,VP; σ̄1, σ̄υ+1]← RSVD (P, υ).

5 compute the small auxiliary matrices:
ΛQ,Q = VT

Q ·UQ, ΛP,P = VT
P ·UP,

ΛP,Q = VT
P ·UQ, ΛQ,P = VT

Q ·UP,
ΛQ = Σ−1

Q , ΛP = Σ−1
P .

6 compute the four blocks of the matrix Σ :
Σ11 ← 1

λCin
ΛQ ⊗ΛQ −ΛQ,Q ⊗ΛQ,Q,

Σ12 ← −ΛQ,P ⊗ΛQ,P,
Σ22 ← 1

(1−λ)Cout
ΛP ⊗ΛP−ΛP,P⊗ΛP,P,

Σ21 ← −ΛP,Q ⊗ΛP,Q.
7 compute the P-Rank similarity S :( v1

v2

)
←
(
Σ11 Σ12
Σ21 Σ22

)−1
(

vec(VT
QVQ)

vec(VT
PVP)

)
.

8 if υ < Rank (A) then
ϵυ ← λCinσ1συ+1+(1−λ)Coutσ̄1σ̄υ+1

1−λCin−(1−λ)Cout
Rank (A)

else ϵυ ← 0.
9 V1 ← Reshape(v1, υ),
V2 ← Reshape(v2, υ).

10 S← (1− λCin − (1− λ)Cout)·
(In +UQV1U

T
Q +UPV2U

T
P).

11 return S and ϵυ .
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(b) Homogeneous Scientific Paper Network G1

Fig. 5: How DE P-Rank computes similarity

λCin (Q⊗Q) and (1− λ)Cout (P⊗P) in Eq.(4) can be factorized into the low-rank
form of U1Σ1V

T
1 and U2Σ2V

T
2 , respectively. Then combining Lemma 3, we have

vec(S) = ( ŨQ ŨP )Σ
(

ṼT
Q

ṼT
P

)
vec (In) + vec (In) with Σ =

(
1

λCin
Σ̃−1

Q −ṼT
QŨQ −ṼT

QŨP

−ṼT
PŨQ

1
(1−λ)Cout

Σ̃−1
P −ṼT

PŨP

)−1

,

where a tilde denotes the self-Kronecker product of a matrix, e.g., ŨQ = UQ ⊗UQ.
Due to Σ small size, the efficiency of computing P-Rank can be greatly improved.

We next provide an algorithm for P-Rank computation, denoted by DE P-Rank.
Algorithm. In Algorithm 1, given G, λ, Cin , Cout, and a low rank υ (an optional pa-

rameter with a default value being the rank r of adjacency matrix), DE P-Rank outputs
the exact S if υ = r, or the approximate S with an error ϵυ if υ < r.

Some notations in the algorithm are elaborated below. (a) RowNorm (A) returns a
matrix by normalizing each nonzero row of A. (b) Rank (A) returns the rank of A. (c)
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#-line time memory operation
2 O(m) O(n) row normalization of matrices
4 O(υn2 + υ2n) O(υn) low-rank υ reduced SVD
5 O(υ2n+ r) O(υ) matrix multiplications and inversions
6 O(υ4 + υ2) O(υ2) Kronecker products
7 O(υ6 + υ4 + υ2n) O(υ4 + υ2) block matrix inversion
8 O(1) O(1) constant operations
9 O(υ) O(υ2) reshape matrices

Table 1: Running Time & Memory Space for DE P-Rank in lines 2-9

RSVD (Q, υ) returns a low-rank υ factorization of Q (see Figure 4). (d) Reshape(v, υ)
returns an υ × υ matrix V such that vec(V) = v.

The algorithm works as follows. (a) It first initializes the adjacency matrix A (line
1), and computes Q and P (line 2). υ is set to Rank (A) if the low rank υ is not
specified (line 3). (b) It then utilizes RSVD () to decompose Q and P into UQΣQVT

Q

and UPΣPV
T
P, respectively (line 4). In light of these matrices together with the self-

Kronecker products, two vectors v1 and v2 can be obtained (lines 5-7). The error esti-
mate ϵυ is also computed if υ < Rank(A) (line 8). (c) Utilizing v1 and v2, the matrix
S can be derived, which is returned as the P-Rank similarity (lines 9-11).

Example. Figures 5(a) and 5(b) show how DE P-Rank computes P-Rank in a
heterogenous graph G0 and a homogeneous G1, respectively. In G0, there are two types
of entities : person (A) and (B) purchase the items sugar, egg, flour. In G1, each vertex
denotes a paper, and each edge a citation. For these graphs, given Cin = 0.4, Cout =
0.6, λ = 0.5, DE P-Rank first computes Q and P. Since υ is not specified, it is set
to Rank(A). Then Q and P are decomposed into small matrices that can be used for
computing

(
Σ11 Σ12

Σ21 Σ22

)
and v1,v2. Finally, DE P-Rank computes the exact S.

To complete the proof of Theorem 1, we next show that the algorithm DE P-
Rank (1) correctly computes the similarity values; (2) it has the time complexity bound
stated in Theorem 1; (3) when υ ∈ [ 12r, r], the error ϵυ (line 8) is acceptable in practice.

(Due to space limitations, please refer to [23] for detailed analysis.)
(1) Correctness. The algorithm returns exactly the same similarity as Eq.(4) when

υ = r; and it returns the low-rank υ approximate similarity with an error ϵυ stated in
Theorem 1 when υ < r.

(2) Running Time. The algorithm consists of three phases: pre-processing (lines 1-
3), similarity computation (lines 4-8), and result collection (lines 9-11). One can verify
that these phases take O (m), O

(
υ2n+ υn2 + υ4 + υ6

)
and O (υ) time, respectively.

Hence, the total time is bounded by O
(
υn2 + υ6

)
with υ ≤ r.

(3) Memory Space. (a) For pre-processing, it takes O(n) space to compute Q
and P (line 3). (b) For similarity computation, the memory consumption is dominated
by O(υ ·max{υ3, n}), which includes O(υn) space to decompose Q and P into low-
rank matrices (line 4), and O(υ4) for computing Σ−1 (line 7). (c) The result collection
requires O(υ2) space (line 10). Therefore, the total space can be bounded by O(υ ·
max{υ3, n}) with υ ≤ r. (see Table 1 for a detailed analysis)

(4) Error Bound. The error ϵυ is reasonably small in practice when υ ∈ [ 12r, r].
Our experimental results in Section 6 show that for such υ, the singular values συ+1
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and σ̄υ+1 (in line 8) are almost zero, leading to a practically acceptable NDCG30 (see
Figure 13). As an extreme case of υ = r, συ+1 = σ̄υ+1 = 0, which implies that ϵυ = 0.

For instance, consider the WIKI (0715) data (r = 15K, σ1 = 1.12, σ̄1 = 1.08).
Setting Cin = 0.8, Cout = 0.6, and λ = 0.5 will yield

ϵυ ≤ 0.5×0.8×1.12+0.5×0.6×1.08
1−0.5×0.8−0.5×0.6 × 10−7 × 15K = 0.0039.

5 Probabilistic P-Rank Similarity Estimation

Although way better than cubic, the complexity bound of DE P-Rank is still too high to
compute similarity in an on-line fashion. For ad-hoc (dynamic) queries on large graphs,
the execution time is one of the most crucial metrics; it is worthwhile to drastically
accelerate the P-Rank computation with a little sacrifice in accuracy.

This motivates us to study the probabilistic P-Rank computation problem. That is,
given a graph G, a query (u, v), and a desired probabilistic accuracy, it is to estimate the
P-Rank similarity s(u, v) in a scalable manner (i.e., in worst-case linear time).

5.1 A Probabilistic P-Rank Model

In the light of the power series form of P-Rank in Lemma 1, our key observation is that
P-Rank similarity can be viewed as a geometric sum of random walks, and its score
s (u, v) qualifies how soon two surfers are expected to meet at the same vertex if they
start from vertices u and v and do random walks on a graph backwards and forwards.

The main idea is to utilize the first hitting time τ (u, v) of coalescing walks to es-
timate sl (u, v) of length l. The underlying rationale is that τ (u, v) can be represented
in a compact way of storing only one integer (rather than a walk of length l) for each
vertex-pair. It is far less costly to estimate τ (u, v) for s(u, v) than to compute the entire
similarity matrix S. Specifically, we show the following result.

Theorem 2 (Probabilistic Model). The P-Rank similarity score between vertices u
and v, with damping factors Cin and Cout for in- and out-links, is equal to the weighted
mean of their expected meeting distances with uniform independent walks, i.e.,

s (u, v) = E(λ · C τ1(u,v)
in + (1− λ) · C τ2(u,v)

out ), (6)

where E(·) denotes the expectation of the random variables; and τi (u, v) (i = 1, 2)
are the first hitting time of the random surfers starting from the vertices u and v, and
following the links backwards (i = 1) and forwards (i = 2), respectively; τi (u, v) =
∞ if they never hit; and τi (u, v) = 0 if u = v.

(A detailed proof of Theorem 2 will be provided after some discussions.)
Intuitively, Theorem 2 provides a stochastic model of P-Rank computation for inter-

preting the similarity score as the random walks of surfer pairs. From this perspective,
the quality of similarity score hinges on whether the random surfers that start from two
distinct vertices are close to a common “source” and meet within merely a few steps.

We first use vertex-pair graph G2 to formulate the hitting time of two surfers in G.
In G2, each vertex (u, v) represents a pair of vertices in G, and each edge from (u, v) to
(x, y) says that in G, one surfer can move from u to x, and the other from v to y. Hence,
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in light of the power series form of P-Rank in Lemma 1, two surfers, in G, starting from
vertices u and v, following the links backwards (resp. forwards) and meeting within a
few steps indicate that, in G2, there exists a path t from one singleton vertex (x, x) to
(u, v) (resp. from (u, v) to (x, x)).

We then introduce the following notions to model the random surfers on G2.
(a) The transformation T in G2 is a mapping T : t′ → t from one path t′ into

another t by adding (i) an edge ⟨(u, v) ,Oi ((u, v))⟩ to the beginning of t′, or (ii) an
edge ⟨Ii ((u, v)) , (u, v)⟩ to the end of t′.
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Fig. 6: Transformation from path t′ into t

(b) The length of a path t, denoted by
l (t) is the number of edges in t. For one
length of a random walk on G2, Figure 6
depicts the corresponding transformation
from path t′ to t = T (t′) . Clearly,

l(t) = l(t′) + 1. (7)

(c) The probability of choosing a path T (t′) based on a path t′, denoted by p (T (t′)),
is defined to be

p
(
T
(
t′
))

=

{
1

|I((u,v))| · p (t
′) , t′ : ∃ (x, x)→ (u, v) ;

1
|O((u,v))| · p (t

′) , t′ : (u, v)→ ∃ (y, y) . (8)

We next complete the proof of Theorem 2 by showing that the probabilistic P-Rank
model Eq.(6) is equivalent to the original model Eq.(1).

As the expectations in Eq.(6) can be rewirten as the sum w.r.t. probability distribu-
tion functions, it follows that

s (u, v) = λ ·
∑

t:∃(x,x)→(u,v)

p (t) · C l(t)
in + (1− λ) ·

∑
t:(u,v)→∃(y,y)

p (t) · C l(t)
out .

Without loss of generality, we assume that u ̸= v, and I (u), I (v), O (u), O (v) ̸= ∅.
In the above equation, we split the sums w.r.t. one step of the path t. Combing this with
Eqs.(7) and (8), we have

s (u, v) = λ ·
|I((u,v))|∑

i=1

∑
t′:∃(x,x)

→Ii((u,v))

= 1
|I((u,v))| ·p

(
t′

)
︷ ︸︸ ︷
p
(
T

(
t
′)) · C

=l
(
t′

)
+1︷ ︸︸ ︷

l
(
T

(
t
′))

in + (1 − λ) ·
|O((u,v))|∑

j=1

∑
t′:Oj((u,v))

→∃(y,y)

= 1
|O((u,v))| ·p

(
t′

)
︷ ︸︸ ︷
p
(
T

(
t
′)) · C

=l
(
t′

)
+1︷ ︸︸ ︷

l
(
T

(
t
′))

out

=
λ · Cin

|I (u)| |I (v)|
·

|I((u,v))|∑
i=1

∑
t′:∃(x,x)→Ii((u,v))

p
(
t
′) · C

l
(
t′

)
in +

(1 − λ) · Cout

|O (u)| |O (v)|
·

|O((u,v))|∑
j=1

∑
t′:Oj((u,v))→∃(y,y)

p
(
t
′) · C

l
(
t′

)
out

=
λ · Cin

|I (u)| |I (v)|
·
|I(u)|∑
i=1

|I(v)|∑
j=1

s
(
Ii (u) , Ij (v)

)
+

(1 − λ) · Cout

|O (u)| |O (v)|
·
|O(u)|∑
i=1

|O(v)|∑
j=1

s
(
Oi (u) ,Oj (v)

)
.

Hence, the probabilistic model Eq.(6) agrees with the original model Eq.(1).

5.2 A Scalable Algorithm for P-Rank Estimation

In light of Theorem 2, we next devise a probabilistic algorithm for P-Rank estimation.
The main result in this subsection is the following.
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Algorithm 2: PR P-Rank (G, (u, v), N, λ, Cin, Cout)
Input : web graph G = (V, E), query vertex pair (u, v) ∈ V × V , sample size N ,

weighting factor λ, damping factors Cin and Cout.
Output: P-Rank similarity score ŝN (u, v).
INDEX PRE-PROCESSING

1 for i← 1, · · · , N do
2 foreach vertex u ∈ V do
3 if ∃v ∈ V − {u} s.t. u and v meet at a common vertex x along a chain of l

in-links, and Len (x/ · · · /v) = Len (x/ · · · /u) = l then
4 add v to the reversed fingerprint tree RFPi (u, l) of G.

5 else if ∃w ∈ V − {u} s.t. u and w meet at a common vertex y along a chain of l′

out-links, and Len (v/ · · · /y) = Len (w/ · · · /y) = l′ then
6 add w to the fingerprint tree FPi (u, l

′) of G.

QUERY ŝN (u, v)
7 for i← 1, · · · , N do
8 if there exists a positive integer l s.t. RFPi (u, l) = RFPi (v, l) then
9 l0 ← minl

{
l ∈ Z+ |RFPi (u, l) = RFPi (v, l)

}
.

10 else if there exists a positive integer l′ s.t. FPi (u, l
′) = FPi (v, l

′) then
11 l′0 ← minl′

{
l′ ∈ Z+ |FPi (u, l

′) = FPi (v, l
′)
}

.

12 ŝ
(i)
N ← λ · C l0

in + (1− λ) · C l′0
out .

13 ŝN ← 1
N
·
∑N

i=1 ŝ
(i)
N .

14 return ŝN .

Theorem 3. For any graph G, the probabilistic P-Rank similarity can be solvable in
O (N · n) time and O(n+N) space, where N is the sample size.

(The proof of Theorem 3 will be provided after a few discussions.)
As will be seen shortly, N is much smaller than n and affects the accuracy of estima-

tion. This suggests that P-Rank can be solved in linear time with controlled probabilistic
error, as opposed to the quadratic-time of its deterministic computation.

To prove Theorem 3, we first present the general idea of the P-Rank estimation. We
then devise a randomized algorithm, followed by a complexity analysis.

The central idea is to use a sampling approach to estimate s from the first hitting
time τ1 and τ2. (i) In the pre-computation phase, we utilize a tree index structure (instead
of a low-rank factorization) to represent all the first hitting time for a set of coalescing
walks in a compact way. (ii) In the query phase, we use two random surfers to estimate
the P-Rank similarity by following the path that is a function of the first hitting time τ1
and τ2, which can be justified by Theorem 2.

Algorithm. The algorithm, referred to as PR P-Rank, is shown in Algorithm 2. It
takes as input a graph G, a query vertex-pair (u, v), a sample size N , a weighting factor
λ, and two damping factors Cin and Cout, it returns the approximate similarity ŝN (u, v).

The algorithm maintains the following data structures to ensure estimation quality.
(a) A (reversed) fingerprint tree FP (resp. RFP) for vertices in G. For each vertex u in
the i-th samples FPi and RFPi, RFPi (u, l) collects candidate vertices v in G such that
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each of the vertices u and v has an incoming directed path of length l that starts from
some common vertex x; and FPi (u, l

′) is the set of vertices w in G such that each of the
vertices u and w has an outcoming directed path of length l′ that ends to some common
vertex y. (b) A random sample list ŝ(i)N of size N in G for estimating P-Rank similarity
with ŝN being the mean of N independent and identically distributed (i.i.d. ) samples
ŝ
(i)
N . (c) The path length, denoted by Len (v/ · · · /u), from vertex v to u in G. The path

is nonempty if Len (v/ · · · /u) ≥ 1.
The algorithm works as follows. (1) It first constructs two sample lists RFP and FP

for G by invoking Index Pre-processing procedure (lines 1-6). For each vertex
u in G, the i-th sample RFPi (u, l) (resp. FPi (u, l

′)) collects the vertex v such that u and
v have some common vertex x along a chain of l in-links (resp. l′out-links) in G (lines
4 and 6). (2) It then computes all the samples ŝ

(i)
N by inspecting the vertices and path

lengths collected in RFP and FP (lines 7-12). More concretely, for each sample ŝ(i)N , PR
P-Rank identifies the minimum length l0 (resp. l0

′) of the incoming (resp. outgoing)
directed path, along which u and v may reach a common vertex (lines 9 and 11). Fur-
thermore, utilizing l0 and l0

′, it then computes ŝ(i)N (line 12), which can be justified by
Theorem 2. These ŝ

(i)
N (i = 1, · · · , N) constitute a sequence of i.i.d. random samples.

They are averaged to produce the final score ŝN (lines 13-14).
To complete the proof of Theorem 3, we next show that (1) PR P-Rank has linear

time complexity bound; (2) the memory requirement is bounded by O(N + n); (3)
the sample size N ≪ n in practice; (4) the error bounds are reasonably small; (5) the
relative order of PR P-Rank scores is almost preserved.

(1) Running Time. PR P-Rank consists of three phases: (a) For pre-processing
(lines 1-6), PR P-Rank invokes the randomized algorithm [5] for FPT indexing (lines 4
and 6), which is in O (N · n) time. (b) For on-line query (lines 7-12), PR P-Rank com-
putes l0 and l0

′ for each sample ŝ(i)N in O (n) time, being O (N · n) time for N samples.
(c) For computing ŝN (lines 13-14), it takes O (N) time to collect all the samples.

Therefore, the total time of PR P-Rank is in O (N · n) time.
(2) Memory Space. The memory requirement is totally bounded by O(N + n),

comprising three phases: (a) In the precomputation phase, FPT indexing (lines 4 and
6) needs O(n) space to maintain RFPi and FPi for every sample ŝ

(i)
N . (b) During the

online query phase, it takes O(n) space for finding the shortest meeting distance l0 and
l′0 (lines 9 and 11), and O(N) space for collecting all the similarity samples ŝ(i)N (line
13). (c) Computing ŝN on-the-fly requires O(N) space.

(3) Sample Size N . (a) Choosing N ≥ −2
⌈
(σ/ϵ)2 logα

⌉
suffices to ensure that

Pr (|ŝN − s| ≥ ϵ) < α (where ŝN (u, v) is the sample mean, and σ2 the variance) ,
given any accuracy ϵ and confidence level 1−α (α ∈ (0, 1)). This is because applying
the Bernstein’s Theorem [11] yields exp(− 1

2 (ϵ
√
N/σ)

2
) < α. (b) N is typically much

smaller than n in practice, which can be verified by our empirical results in Section 6
(see Figure 14. For instance, consider DBLP (98-07) graph with n = 10K vertices.
Given ϵ = 0.15σ and α = 0.05, we have N ≥ −2

⌈
0.15−2 log (0.05)

⌉
= 267.

(4) Error Bound. We denoted by Err , supN≥1 Pr (|ŝN − s| ≥ ϵ).
(a) An upper bound can be obtained from Bernstein’s Theorem [11], which gives

Err ≤ exp(−Nϵ2/(2σ2)),
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(b) A lower bound follows from the Central Limit Theorem [10], in which

Err ≥ Pr (|ŝN − s| ≥ ϵ) = Pr

(∣∣∣∣∣ 1√
N

N∑
i=1

(
ŝ
(i)
N − s

σ

)∣∣∣∣∣ ≥ ϵ
√
N

σ

)
= 2− 2Φ

(
ϵ
√
N

σ

)
,

where Φ (·) is the cumulative distribution function of normal distribution N (0, 1).
(c) Both bounds of Err are reasonable because (i) exp(−Nϵ2/(2σ2)) is decreasing

w.r.t. N , and (ii) Φ(ϵ
√
N/σ) non-decreasingly approaches 1 as N increases. Hence,

limN→∞ exp(−Nϵ2/(2σ2)) = limN→∞ 2− 2Φ(ϵ
√
N/σ) = 0.

According to the Squeeze Principle [10], we have ŝN (u, v)
a.s.→ s (u, v) as N → ∞.

(d) Err is typically small and acceptable in practice. For instance, Setting ϵ =

0.15σ and N = 300, we have exp
(
− Nϵ2

2σ2

)
= exp

(
− 300×(0.15σ)2

2σ2

)
≈ 0.034 and

2 − 2Φ
(
ϵ
√
N

σ

)
= 2 − 2Φ

(
0.15 ×

√
300

)
≈ 0.0094. This implies that only 0.94% (at

most 3.4%) of the estimated scores ŝN fall outside the interval [s− 0.15σ, s+ 0.15σ].
(5) Relative Order. The relative order of the similarity estimated by PR P-Rank is

almost preserved with the deterministic result, as shown in the following theorem.

Theorem 4. Let ŝN (·, ·) be the estimated similarity by PR P-Rank with N being the
sample size, and s(·, ·) the exact similarity. If s(u, v) > s(u,w) + ϵ, then

Pr(ŝN (u, v)− ŝN (u,w) > ϵ) ≤ exp(−Nϵ2/2) (∀u, v, w ∈ V).

(A detailed proof of Theorem 4 is provided in the Appendix.)
Our empirical results on DBLP will further verify that for N ≥ 350, PR P-Rank can

almost maintain the relative order of similarity (see Figure 12).

6 Experimental Evaluation

We conduct a comprehensive empirical study over several real and synthetic datasets
to evaluate (1) the scalability, time and space efficiency of the proposed algorithms, (2)
the approximability of DE P-Rank, and (3) the effectiveness of PR P-Rank.

6.1 Experimental Settings

Datasets. We used three real datasets (AMZN, DBLP, and WIKI) to evaluate the efficacy
of our methods, and synthetic data (0.5M-3.5M RAND) to vary graph characteristics.
The sizes of AMZN, WIKI and DBLP are shown in Tables 2-4.

0505 0601
|V| 410K 402K
|E| 3,356K 3,387K

Table 2: AMZN

98-99 98-01 98-03 98-05 98-07
|V| 1,525 3,208 5,307 7,984 10,682
|E| 5,929 13,441 24,762 39,399 54,844

Table 3: DBLP

0715 0827 0919
|V| 3,088K 3,102K 3,116K
|E| 1,126K 1,134K 1,142K

Table 4: WIKI

(1) AMZN data4 are based on Customers Who Bought This Item Also Bought feature
of the Amazon website. Each node represents a product. There is a directed edge from

4 http://snap.stanford.edu/data/index.html
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node i to j if a product i is frequently co-purchased with product j. Two datasets were
collected in May 5 2003, and June 1 2003.

(2) DBLP data5 record co-authorships among scientists in the Bibliography. We ex-
tracted the 10-year (from 1998 to 2007) author-paper information, and singled out the
publications on 6 conferences (ICDE, VLDB, SIGMOD, WWW, SIGIR, and KDD).
Choosing every two years as a a time step, we built 5 co-authorship graphs.

(3) WIKI data6 contain millions of encyclopedic articles on a vast array of topics
to the latest scientific research. We built 3 graphs from the English WIKI dumps,where
each vertex represents an article, and edges the relationship that “a category contains an
article to be a link from the category to the article”.

(4) RAND data were produced by C++ boost generator for digraphs, with 2 param-
eters: the number of vertices, and the number of edges.
Parameter Settings. To keep consistency with the experimental conditions in [26],
we assigned each of the following parameters a default value.

Notation Description Default Notation Description Default
Cin in-link damping factor 0.8 λ weighting factor 0.5
Cout out-link damping factor 0.6 υ low rank 50%× Rank
ϵ desired accuracy 0.001 N sample size 350

Compared Algorithms. We have implemented the following algorithms. (1) DE and
PR, i.e., DE P-Rank and PR P-Rank; (2) Naive, a K-Medoids P-Rank iterative al-
gorithm (K = 10) based on a radius-based pruning method [26]; (3) Psum, a variant
of P-Rank, leveraging a partial sum function [18] to compute similarity; (4) Sim, an
enhanced version of SimRank algorithm [1], which takes account of the evidence fac-
tor for incident vertices. These algorithms were implemented in C++, except that the
MATLAB implementation [3] for calculating RSVD () and Rank ().

All experiments were run on a machine with a Pentium(R) Dual-Core (2.00GHz)
CPU and 4GB RAM, using Windows Vista. Each experiment was repeated over 5 times,
and the average is reported here.

6.2 Experimental Results

Scalability. We first evaluate the scalability of the five ranking algorithms, using syn-
thetic data. In these experiments, PR fingerprint tree indexing is precomputed and
shared by all vertex pairs in a given graph, and thus its cost is counted only once.

We randomly generate 7 graphs G = (V, E), with the edge size |E| varying from
2M to 6M. The results are reported in Figures 7(a), 7(b) and 7(c). We can notice that
(1) DE is almost one order of magnitude faster than the other algorithms when |V| is
increased from 0.5M to 3.5M. (2) Execution time for PR increases linearly with |V| due
to the use of finger printed trees. Varying |E|, we also see that the CPU time of DE is
less sensitive to |E|. This is because the time of DE mainly depends on the number of
vertices having the similar neighbor structures. Hence, graph sparsity has not a large
impact on DE. In light of this, DE scales well with |E|, as expected.

5 http://www.informatik.uni-trier.de/˜ley/db/
6 http://en.wikipedia.org/
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Fig. 7: Scalability on Synthetic Datasets
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Fig. 8: Time Efficiency on Real Datasets
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Fig. 10: Amortized Costs

Time & Space Efficiency. We next compare the CPU time and memory space of
the five ranking algorithms on real datasets. The results are depicted in Figures 8 and
9. It can be seen that the time and space of PR clearly outperform the other approaches
on AMZN, WIKI, and DBLP, i.e., the use of Monte Carlo sampling approach is effective.
In all the cases, DE runs faster than Psum, Naive and Sim with moderate memory
requirements. This is because DE uses a singular value decomposition to cluster a large
body of vertices having the similarity neighbor structures, and a low-rank approxima-
tion to eliminate the vertices of tiny singular values, which can save large amounts of
memory space, and avoid repetitive calculations of “less important” vertices. Besides,
with the increasing number of vertices on DBLP data, the upward trends of the time and
space for DE and PR match our analysis in Sections 4 and 5.

Figure 10 depicts how the total computational time and memory space are amor-
tized on the different phases of DE and PR, respectively, over AMZN data. We see
from the results that the similarity calculation phase of DE is far more time and space
consuming (97.4% time and 99.59% space) than the other two phases (2.3% time and
0.27% space for preprocessing, and 0.3% time and 0.14% space for result collection),
which is expected because factorizing Q and P, and computing Σ−1 yield a consid-
erable amount of complexity. We also notice that the total cost of PR is well balanced
between off-line pre-indexing and on-line query phases, both of which take high pro-
portions of CPU time and memory usage, i.e., almost 71.6% total time and 32.6% space

14



PR DE Psum Naive Sim

0505 0601
0

0.2

0.4

0.6

0.8

1

amzn data

N
D
C
G

3
0

0716 0827 0909
0

0.2

0.4

0.6

0.8

1

wiki data

98-99 98-01 98-03 98-05 98-07
0

0.2

0.4

0.6

0.8

1

dblp data

Fig. 11: Accuracy on Real Datasets

Rank PR DE Naive
1 Shivnath Babu Shivnath Babu Shivnath Babu
2 Chris Olston Yingwei Cui Yingwei Cui
3 Jun Yang Chris Olston Chris Olston
4 Yingwei Cui Jun Yang Jun Yang
5 Rajeev Motwani Arvind Arasu Rajeev Motwani
6 Arvind Arasu Rajeev Motwani Arvind Arasu
7 David J. DeWitt Alon Y. Halevy Utkarsh Srivastava
8 Glen Jeh Anish Das Sarma David J. DeWitt
9 Utkarsh Srivastava Omar Benjelloun Omar Benjelloun
10 Omar Benjelloun David J. DeWitt Alon Y. Halevy

Fig. 12: Top-10 Co-authors of
Jennifer Widom on DBLP
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are leveraged on indexing phase, and 28.3% time and 67.3% space on query phase. This
tells that the use of finger printed trees can effectively reduce the overhead costs of PR.

Accuracy. We now evaluate the accuracy of the five algorithms on real data. The
Normalized Discounted Cumulative Gain (NDCG) measure [8] is adopted. The NDCG
at a rank position p is defined as NDCGp = 1

IDCGp

∑p
i=1 (2

ranki − 1)/(log2 (1 + i)),
where ranki is the average similarity at rank position i judged by the human experts,
and IDCGp is the normalization factor to guarantee that NDCG of a perfect ranking at
position p equals 1.

Figure 11 compares the accuracy of DE and PR with that of Naive, Psum and
Sim returned by NDCG30 on AMZN, WIKI and DBLP, respectively. It can be seen that
DE always achieves higher accuracy than PR. The accuracy of PR is not that good
because some valid finger printed trees may be neglected with certain probability by
PR sampling. The results on DBLP also show that the accuracy of DE and PR is insen-
sitive to |V|. Hence, adding vertices does not affect the error in estimation, as expected.

We further evaluate the ground truth calculated by DE and PR on DBLP (98-07)
dataset to retrieve the top-k most similar authors for a given query u. Interestingly,
Figure 12 depicts the top-10 ranked results for the query “Jennifer Widom” according
to the similarity scores returned by PR, DE and Naive, respectively. These members
were frequent co-authors of the 6 major conference papers with “Jennifer Widom” from
1998 to 2007. It can be noticed that the ranked results for different ranking algorithms
on DBLP (98-07) are practically acceptable and obey our common sense pretty well.
The similarities calculated by DE and PR almost preserve the relative order of Naive.
Hence, both DE and PR can be effectively used for P-Rank similarity estimation in
top-k nearest neighbor search on real networks.

Effects of υ. For DE algorithm, we next investigate the impact of approximation
rank υ and adjacency matrix rank r on similarity estimation, using synthetic data.

We use 4 web graphs with the size |V| of the set of vertices ranging from 0.5M to
3.5M, 2|V| edges. We consider various approximation ranks υ for a given graph G. We
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fix |V| while varying υ from 10% × r to 90% × r with r being the rank of adjacency
matrix for G. The results are reported in Figure 13, which visualizes the low-rank υ
as a speed-accuracy trade-off. When υ becomes increasingly close to r (i.e., the radio
υ
r approaches 1), high accuracy (NDCG30) could be expected, but more running time
needs to be consumed. This tells that adding approximation rank υ will induce smaller
errors for similarity estimation, but it will increase the complexity of computation up to
a point of the rank r when no extra approximation errors can be reduced.

Effects of N . For PR algorithm, we evaluate the impact of the sample size N of
the finger printed trees on similarity quality.

We consider 4 web graphs G with the size |V| (= 1
2 |E|) ranged from 0.5M to 3.5M.

In Figure 14, we fixed |V| while varying N from 50 to 400. In all the cases, when the
sample size is larger (N > 300), higher accuracy could be attained (NDCG30 > 0.6),
irrelevant to the size |V| of graph. The result reveals that adding samples of finger
printed trees reduces errors in estimation, and hence improves the effectiveness of PR.

Summary. We find the following. (1) DE and PR can scale well with the large
size of graphs, whereas Naive, Psum, and Sim fail to run with an acceptable time.
(2) DE significantly outperforms Psum and Sim by almost one order of magnitude
with error guarantees (a drop 10% in NDCG). (3) PR may run an order of magnitude
faster than DE with a little sacrifice in accuracy (5% relative error), which is practically
acceptable for ad-hoc query performed in an on-line fashion.

7 Related Work

P-Rank has become an appealing measure of similarity used in a variety of areas, such
as publication network [26], top-k nearest neighbor search [13], and social graph [2,17].
The traditional method leverages a fixed-point iteration to compute P-Rank, yielding
O(Kn4) time in the worst case. Due to the high time complexity, Zhao et al. [26] further
propose the radius- and category-based pruning techniques to improve the computation
of P-Rank to O(Kd2n2) at the expense of reduced accuracy, where d is the average
degree in a graph. However, their heuristic methods can not guarantee the similarity
accuracy. In contrast, our methods are based on two matrix forms for optimizing P-
Rank computation with fast speed and provable accuracy.

There has also been work on other similarity optimization (e.g., [5, 6, 15, 18, 20,
22, 24, 25]). Lizorkin et al. [18] proposed an interesting memoization approach to im-
prove the computation of SimRank from O(Kn4) to O(Kn3). The idea of memoiza-
tion can be applied to P-Rank computation in the same way. A notion of the weighted
and evidence-based SimRank is proposed by Antonellis et al. [1], yielding better query
rewrites for sponsored search. He et al. [6] and Yu et al. [24] show interesting approach-
es to paralleling the computation of SimRank.

Closer to this work are [15,17,27]. Our prior work [17] focuses on P-Rank compu-
tations on undirected graphs by showing an O(n3)-time deterministic algorithm; how-
ever the optimization techniques in [17] rely mainly on the symmetry of the adjacency
matrix. In comparison, this work further studies the general approaches to optimizing
P-Rank on directed graphs, achieving quadratic-time for deterministic computation, and
linear-time for probabilistic estimation. Extensions of SimRank are studied in [27] for
structure- and attribute-based graph clustering, but the time complexity is still cubic in
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the number of vertices. Recent work by Li et al. shows an incremental algorithm for
dynamically computing SimRank; however it is not clear that extending to the P-Rank
model is possible. Besides, it seems hard to obtain an error bound for computing Sim-
Rank on directed graphs as the error bound in [15] is only limited to undirected graphs.
In contrast, the error bounds in our work may well suit digraphs.

In comparison to the work on deterministic SimRank computation, the work on
probabilistic computation is limited. Li et al. [16] exploit the block structure of linkage
patterns for SimRank estimation, which is in O(n4/3) time. Fogaras et al. [4, 5] utilize
a random permutation method in conjunction with Monte Carlo Simulation to estimate
SimRank in linear time. As opposed to our probabilistic methods, (a) these algorithms
are merely based on ingoing links; it seems hard to observe global structural connectiv-
ity while maintaining linear time, by using only a finger printed tree structure. (b) The
theoretical guarantee of choosing a moderate sample size is not mentioned in [4, 5] as
these studies ignore the central limit property of the finger printed tree by and large.

8 Conclusion

In this paper, we have studied the optimization problem of P-Rank computation. We
proposed two equivalent matrix forms to characterize the P-Rank similarity. (i) Based
on the matrix inversion form of P-Rank, a deterministic algorithm was devised to reduce
the computational time of P-Rank from cubic to quadratic in the number of vertices;
the error estimate was given as a by-product when the low rank approximation was de-
ployed. (ii) Based on the matrix power series form of P-Rank, a probabilistic algorithm
was also suggested for further speeding up the computation of P-Rank in linear time
with controlled accuracy. The experimental results on both real and synthetic datasets
have demonstrated the efficiency and effectiveness of our methods.
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8. K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM

Trans. Inf. Syst., 20:422–446, October 2002.
9. G. Jeh and J. Widom. SimRank: a measure of structural-context similarity. In KDD, pages

538–543, 2002.
10. O. Kallenberg. Foundations of Modern Probability. Springer, January 2002.
11. K. Latuszynski, B. Miasojedow, and W. Niemiro. Nonasymptotic bounds on the estimation

error for regenerative MCMC algorithms. Technical report, 2009.

17



12. A. J. Laub. Matrix Analysis For Scientists And Engineers. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2004.

13. P. Lee, L. V. Lakshmanan, and J. X. Yu. On top-k structural similarity search. In ICDE,
2012.

14. J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg. Signed networks in social media. In
CHI, pages 1361–1370, 2010.

15. C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu. Fast computation of SimRank for
static and dynamic information networks. In EDBT, 2010.

16. P. Li, Y. Cai, H. Liu, J. He, and X. Du. Exploiting the block structure of link graph for
efficient similarity computation. In PAKDD, 2009.

17. X. Li, W. Yu, B. Yang, and J. Le. ASAP: Towards accurate, stable and accelerative
penetrating-rank estimation on large graphs. In WAIM, pages 415–429, 2011.

18. D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov. Accuracy estimate and optimiza-
tion techniques for SimRank computation. VLDB J., 19(1), 2010.

19. Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. Society for Industrial
and Applied Mathematics, 2 edition, April 2003.

20. A. D. Sarma, S. Gollapudi, and R. Panigrahy. Estimating PageRank on graph streams. In
PODS, pages 69–78, 2008.
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Appendix: Proof of Theorem 4

Proof. Let A , {|ŝN (u, v)− s(u, v)| ≥ ϵ}, and B , {|ŝN (u,w)− s(u,w)| ≥ ϵ}.
We first find an upper bound of variance σ2 for any sample ŝ

(i)
N ∈ [0, 1].

σ2 = E[(ŝ(i)N )
2
]− E[ŝ(i)N ]

2
≤ E[ŝ(i)N ]− E[ŝ(i)N ]

2
= −(E[ŝ(i)N ]− 1/2)

2
+ 1/4 ≤ 1/4.

Then, using the Bernstein’s inequality, we have

Pr(A ∩B) ≤ Pr(A) ≤ exp(−Nϵ2/(2σ2)) ≤ exp(−2Nϵ2).

Since s(u, v) > s(u,w) + ϵ, we have

A ∩B ⊇ {ŝN (u, v)− ŝN (u,w) > ŝN (u, v)− ŝN (u,w)−

>ϵ(>0)︷ ︸︸ ︷
(s(u, v)− s(u,w))

= (ŝN (u, v)− s(u, v)︸ ︷︷ ︸
≥ϵ

)− (ŝN (u,w)− s(u,w))︸ ︷︷ ︸
<−ϵ

> 2ϵ}

Hence, Pr{ŝN (u, v)− ŝN (u,w) > ϵ} ≤ exp(−Nϵ2/2).
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