10,997 research outputs found

    Preliminary catalog of pictures taken on the lunar surface during the Apollo 15 mission

    Get PDF
    Catalog of all pictures taken from lunar module or lunar surface during Apollo 15 missio

    Transverse Double-Spin Asymmetries for Muon Pair Production in pp-Collisions

    Get PDF
    We calculate the rapidity dependence of the transverse double-spin asymmetry for the Drell-Yan process to next-to-leading order in the strong coupling. Input transversity distributions are obtained by saturating the Soffer inequality at a low hadronic mass scale. Results for the polarized BNL-RHIC proton-proton collider and the proposed HERA-N fixed-target experiment are presented, and the influence of the limited muon acceptance of the detectors on measurements of the asymmetry is studied in detail.Comment: 7 pages including 5 figures; significantly shortened, to be published in Phys. Rev.

    Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first principles calculations for copper

    Full text link
    First principles calculations of the Sigma 5 (310)[001] symmetric tilt grain boundary in Cu with Bi, Na, and Ag substitutional impurities provide evidence that in the phenomenon of Bi embrittlement of Cu grain boundaries electronic effects do not play a major role; on the contrary, the embrittlement is mostly a structural or "size" effect. Na is predicted to be nearly as good an embrittler as Bi, whereas Ag does not embrittle the boundary in agreement with experiment. While we reject the prevailing view that "electronic" effects (i.e., charge transfer) are responsible for embrittlement, we do not exclude the role of chemistry. However numerical results show a striking equivalence between the alkali metal Na and the semi metal Bi, small differences being accounted for by their contrasting "size" and "softness" (defined here). In order to separate structural and chemical effects unambiguously if not uniquely, we model the embrittlement process by taking the system of grain boundary and free surfaces through a sequence of precisely defined gedanken processes; each of these representing a putative mechanism. We thereby identify three mechanisms of embrittlement by substitutional impurities, two of which survive in the case of embrittlement or cohesion enhancement by interstitials. Two of the three are purely structural and the third contains both structural and chemical elements that by their very nature cannot be further unravelled. We are able to take the systems we study through each of these stages by explicit computer simulations and assess the contribution of each to the nett reduction in intergranular cohesion. The conclusion we reach is that embrittlement by both Bi and Na is almost exclusively structural in origin; that is, the embrittlement is a size effect.Comment: 13 pages, 5 figures; Accepted in Phys. Rev.

    Bounding the graviton mass with binary pulsar observations

    Get PDF
    By comparing the observed orbital decay of the binary pulsars PSRB1913+16 and PSRB1534+12 to that predicted by general relativity due to gravitational-wave emission, we are able to bound the mass of the graviton to be less than 7.6×1020eV/c27.6\times10^{-20} \text{eV}/c^2 at 90% confidence. This is the first such bound to be derived from dynamic gravitational fields. It is approximately two orders of magnitude weaker than the static-field bound from solar system observations, and will improve with further observations.Comment: 9 pages, 1 figure. Presented at Fourth Edoardo Amaldi Conference on Gravitational Waves, Perth, 200

    Beyond Hebb: Exclusive-OR and Biological Learning

    Full text link
    A learning algorithm for multilayer neural networks based on biologically plausible mechanisms is studied. Motivated by findings in experimental neurobiology, we consider synaptic averaging in the induction of plasticity changes, which happen on a slower time scale than firing dynamics. This mechanism is shown to enable learning of the exclusive-OR (XOR) problem without the aid of error back-propagation, as well as to increase robustness of learning in the presence of noise.Comment: 4 pages RevTeX, 2 figures PostScript, revised versio

    Surface Enhanced Second Harmonic Generation from Macrocycle, Catenane, and Rotaxane Thin Films: Experiments and Theory

    Get PDF
    Surface enhanced second harmonic generation (SE SHG) experiments on molecular structures, macrocycles, catenanes, and rotaxanes, deposited as monolayers and multilayers by vacuum sublimation on silver, are reported. The measurements show that the molecules form ordered thin films, where the highest degree of order is observed in the case of macrocycle monolayers and the lowest in the case of rotaxane multilayers. The second harmonic generation activity is interpreted in terms of electric field induced second harmonic (EFISH) generation where the electric field is created by the substrate silver atoms. The measured second order nonlinear optical susceptibility for a rotaxane thin film is compared with that obtained by considering only EFISH contribution to SHG intensity. The electric field on the surface of a silver layer is calculated by using the Delphi4 program for structures obtained with TINKER molecular mechanics/dynamics simulations. An excellent agreement is observed between the calculated and the measured SHG susceptibilities.

    Dynamics of Light Antiquarks in the Proton

    Get PDF
    We present a comprehensive analysis of the recent data from the E866 experiment at Fermilab on Drell-Yan production in pD and pp collisions, which indicates a non-trivial x-dependence for the asymmetry between u-bar and d-bar quark distributions in the proton. The relatively fast decrease of the asymmetry at large x suggests the important role played by the chiral structure of the nucleon, in particular the pi-N and pi-Delta components of the nucleon wave function. At small x the data require an additional non-chiral component, which may be attributed to the Pauli exclusion principle as first suggested by Field and Feynman.Comment: version to appear in Phys. Rev.

    Principal scientific results of the Surveyor 3 Mission

    Get PDF
    The fine lunar surface material at the Surveyor 3 landing site has about 3 × 10^3-dyne/cm^2 cohesion, 35° angle of internal friction, 3 × 10^5-dyne/cm^2 static bearing capacity. A small rock withstood a local pressure of 2 × 10^7 dynes/cm^2. Soil strength and density increase significantly at depths of a few centimeters. Exposed surface has a considerably higher albedo than the material just below it. The photometric function changed when the surface was slightly compressed. Fine surface material appears to be gradually moving downslope

    Entropic effects on the Size Evolution of Cluster Structure

    Full text link
    We show that the vibrational entropy can play a crucial role in determining the equilibrium structure of clusters by constructing structural phase diagrams showing how the structure depends upon both size and temperature. These phase diagrams are obtained for example rare gas and metal clusters.Comment: 5 pages, 3 figure
    corecore