1,519 research outputs found
Exponential martingales and changes of measure for counting processes
We give sufficient criteria for the Dol\'eans-Dade exponential of a
stochastic integral with respect to a counting process local martingale to be a
true martingale. The criteria are adapted particularly to the case of counting
processes and are sufficiently weak to be useful and verifiable, as we
illustrate by several examples. In particular, the criteria allow for the
construction of for example nonexplosive Hawkes processes as well as counting
processes with stochastic intensities depending on diffusion processes
Beam test results for the FiberGLAST instrument
The FiberGLAST scintillating fiber telescope is a large-area instrument concept for NASA\u27s GLAST program. The detector is designed for high-energy gamma-ray astronomy, and uses plastic scintillating fibers to combine a photon pair tracking telescope and a calorimeter into a single instrument. A small prototype detector has been tested with high energy photons at the Thomas Jefferson National Accelerator Facility. We report on the result of this beam test, including scintillating fiber performance, photon track reconstruction, angular resolution, and detector efficiency
A bone grease processing station at the Mitchell Prehistoric Indian Village: archaeological evidence for the exploitation of bone fats
© Association for Environmental Archaeology 2015. Author's accepted manuscript version deposited in accordance with SHERPA RoMEO guidelines. The definitive version is available at http://www.maneyonline.com/doi/abs/10.1179/1749631414Y.0000000035.Recent excavations at the Mitchell Prehistoric Indian Village, an Initial Middle Missouri site in Mitchell, South Dakota have revealed a large, clay-lined feature filled with fractured and fragmented bison bones. Fracture and fragmentation analysis, along with taphonomic evidence, suggests that the bones preserved within the feature represent evidence of prehistoric bone marrow and bone grease exploitation. Further, the character of the feature suggests that it served as a bone grease processing station. Bone fat exploitation is an activity that is frequently cited as a causal explanation for the nature of many fractured and fragmented bone assemblages in prehistory, and zooarchaeological assemblages have frequently been studied as evidence of bone fat exploitation. The Mitchell example provides some of the first direct, in-situ archaeological evidence of a bone grease processing feature, and this interpretation is sustained by substantial analytical evidence suggesting bone fat exploitation. This new evidence provides a clearer concept of the nature of bone fat exploitation in prehistory as well as an indication of the scale and degree to which bone grease exploitation occurred at the Mitchell site. Finally, this research demonstrates the importance of careful zooarchaeological and taphonomic analysis for the interpretation of both artifactual remains as well as archaeological features
Structure and Colors of Diffuse Emission in the Spitzer Galactic First Look Survey
We investigate the density structure of the interstellar medium using new
high-resolution maps of the 8 micron, 24 micron, and 70 micron surface
brightness towards a molecular cloud in the Gum Nebula, made as part of the
Spitzer Space Telescope Galactic First Look Survey. The maps are correlated
with 100 micron images measured with IRAS. At 24 and 70 micron, the spatial
power spectrum of surface brightness follows a power law with spectral index
-3.5. At 24 micron, the power law behavior is remarkably consistent from the
0.2 degree size of our maps down to the 5 arcsecond spatial resolution. Thus,
the structure of the 24 micron emission is self-similar even at milliparsec
scales. The combined power spectrum produced from Spitzer 24 micron and IRAS 25
micron images is consistent with a change in the power law exponent from -2.6
to -3.5. The decrease may be due to the transition from a two-dimensional to
three-dimensional structure. Under this hypothesis, we estimate the thickness
of the emitting medium to be 0.3 pc.Comment: 13 Pages, 3 Figures, to be published in Astrophysical Journal
Supplement Series (Spitzer Special Issue), volume 154. Uses aastex v5.
Simulations of energetic beam deposition: from picoseconds to seconds
We present a new method for simulating crystal growth by energetic beam
deposition. The method combines a Kinetic Monte-Carlo simulation for the
thermal surface diffusion with a small scale molecular dynamics simulation of
every single deposition event. We have implemented the method using the
effective medium theory as a model potential for the atomic interactions, and
present simulations for Ag/Ag(111) and Pt/Pt(111) for incoming energies up to
35 eV. The method is capable of following the growth of several monolayers at
realistic growth rates of 1 monolayer per second, correctly accounting for both
energy-induced atomic mobility and thermal surface diffusion. We find that the
energy influences island and step densities and can induce layer-by-layer
growth. We find an optimal energy for layer-by-layer growth (25 eV for Ag),
which correlates with where the net impact-induced downward interlayer
transport is at a maximum. A high step density is needed for energy induced
layer-by-layer growth, hence the effect dies away at increased temperatures,
where thermal surface diffusion reduces the step density. As part of the
development of the method, we present molecular dynamics simulations of single
atom-surface collisions on flat parts of the surface and near straight steps,
we identify microscopic mechanisms by which the energy influences the growth,
and we discuss the nature of the energy-induced atomic mobility
Estimation of GRB detection by FiberGLAST
FiberGLAST is one of several instrument concepts being developed for possible inclusion as the primary Gamma-ray Large Area Space Telescope (GLAST) instrument. The predicted FiberGLAST effective area is more than 12,000 cm2 for energies between 30 MeV and 300 GeV, with a field of view that is essentially flat from 0°–80°. The detector will achieve a sensitivity more than 10 times that of EGRET. We present results of simulations that illustrate the sensitivity of FiberGLAST for the detection of gamma-ray bursts
Development and testing of a fiber/multianode photomultiplier system for use on FiberGLAST
A scintillating fiber detector is currently being studied for the NASA Gamma-Ray Large Area Space Telescope (GLAST) mission. This detector utilizes modules composed of a thin converter sheet followed by an x, y plane of scintillating fibers to examine the shower of particles created by high energy gamma-rays interacting in the converter material. The detector is composed of a tracker with 90 such modular planes and a calorimeter with 36 planes. The two major component of this detector are the scintillating fibers and their associated photodetectors. Here we present current status of development and test result of both of these. The Hamamatsu R5900-00-M64 multianode photomultiplier tube (MAPMT) is the baseline readout device. A characterization of this device has been performed including noise, cross- talk, gain variation, vibration, and thermal/vacuum test. A prototype fiber/MAPMT system has been tested at the Center for Advanced Microstructures and Devices at Louisiana State University with a photon beam and preliminary results are presented
The galactic first-look survey with the Spitzer space telescope
The galactic first look survey (GFLS) of the Spitzer space telescope was executed during 1–11 December 2003 as one of the first science observations during nominal operations. The aim of the FLS is to provide a characteristic “first-look” at the mid-and far-infrared sky at sensitivities that allow the detection of point sources ≈100 times fainter than those in previous systematic large-area surveys. The whole program took 35.5 h to complete and consisted of the following elements:
•Galactic longitudinal strips of size 15′ × 1° with IRAC and MIPS at l = 105.6° and 254.4° and various galactic latitudes.
•10′ × 10′ IRAC maps at l = 97.5° and b = 0°, ±4°, and +16°.
•Coverage of L1228 with 2° scan maps.
Even at these large distances from the galactic center, confusion sets a limit to the detection of point sources in the galactic plane for IRAC channel 1 (3.6 μm) at 100 μJy ≈ 16.1^m. As positive galactic latitudes were mainly sampled at l = 97.5° and 105.6° and negative latitudes at 254.4° galactic longitude, the observations are well suited to derive information on the warp of the galactic disk. In order to reproduce the source counts from the GFLS we had to assume an amplitude of the warp within 20% of that derived from 2MASS. The whole survey is included in the Spitzer science archive which opened in April 2004
POOL development status and production experience
The pool of persistent objects for LHC (POOL) project, part of the large Hadron collider (LHC) computing grid (LCG), is now entering its third year of active development. POOL provides the baseline persistency framework for three LHC experiments. It is based on a strict component model, insulating experiment software from a variety of storage technologies. This paper gives a brief overview of the POOL architecture, its main design principles and the experience gained with integration into LHC experiment frameworks. It also presents recent developments in the POOL works areas of relational database abstraction and object storage into relational database management systems (RDBMS) systems
- …