5,754 research outputs found

    Criterion for universality class independent critical fluctuations: example of the 2D Ising model

    Get PDF
    Order parameter fluctuations for the two dimensional Ising model in the region of the critical temperature are presented. A locus of temperatures T*(L) and of magnetic fields B*(L) are identified, for which the probability density function is similar to that for the 2D-XY model in the spin wave approximation.The characteristics of the fluctuations along these points are largely independent of universality class. We show that the largest range of fluctuations relative to the variance of the distribution occurs along these loci of points, rather than at the critical temperature itself and we discuss this observation in terms of intermittency. Our motivation is the identification of a generic form for fluctuations in correlated systems in accordance with recent experimental and numerical observations. We conclude that a universality class dependent form for the fluctuations is a particularity of critical phenomena related to the change in symmetry at a phase transition.Comment: to appear in Phys. Rev.

    On Limit Cycles in Supersymmetric Theories

    Full text link
    Contrary to popular belief conformality does not require zero beta functions. This follows from the work of Jack and Osborn, and examples in non-supersymmetric theories were recently found by some of us. In this note we show that such examples are absent in unitary N=1 supersymmetric four-dimensional field theories. More specifically, we show to all orders in perturbation theory that the beta-function vector field of such theories does not admit limit cycles. A corollary of our result is that unitary N=1 supersymmetric four-dimensional theories cannot be superscale-invariant without being superconformal.Comment: 8 pages, 1 figure. Improved discussion in Section

    Inheritance-Based Diversity Measures for Explicit Convergence Control in Evolutionary Algorithms

    Full text link
    Diversity is an important factor in evolutionary algorithms to prevent premature convergence towards a single local optimum. In order to maintain diversity throughout the process of evolution, various means exist in literature. We analyze approaches to diversity that (a) have an explicit and quantifiable influence on fitness at the individual level and (b) require no (or very little) additional domain knowledge such as domain-specific distance functions. We also introduce the concept of genealogical diversity in a broader study. We show that employing these approaches can help evolutionary algorithms for global optimization in many cases.Comment: GECCO '18: Genetic and Evolutionary Computation Conference, 2018, Kyoto, Japa

    Enhancing research quality and reporting: why the Journal of Comorbidity is now publishing study protocols

    Get PDF
    The Journal of Comorbidity was launched in 2011 and has since become established as a high-quality journal that publishes open-access, peer-reviewed articles, with a focus on advancing the clinical management of patients with comorbidity/multimorbidity. To further enhance research quality and reporting of studies in this field, the journal is now offering authors the opportunity to publish a summary of their study protocols – a move designed to generate interest and raise awareness in ongoing clinical research and to enable researchers to detail their methodologies in order that replication by scientific peers is possible

    Weibull-type limiting distribution for replicative systems

    Full text link
    The Weibull function is widely used to describe skew distributions observed in nature. However, the origin of this ubiquity is not always obvious to explain. In the present paper, we consider the well-known Galton-Watson branching process describing simple replicative systems. The shape of the resulting distribution, about which little has been known, is found essentially indistinguishable from the Weibull form in a wide range of the branching parameter; this can be seen from the exact series expansion for the cumulative distribution, which takes a universal form. We also find that the branching process can be mapped into a process of aggregation of clusters. In the branching and aggregation process, the number of events considered for branching and aggregation grows cumulatively in time, whereas, for the binomial distribution, an independent event occurs at each time with a given success probability.Comment: 6 pages and 5 figure

    SM(2,4k) fermionic characters and restricted jagged partitions

    Full text link
    A derivation of the basis of states for the SM(2,4k)SM(2,4k) superconformal minimal models is presented. It relies on a general hypothesis concerning the role of the null field of dimension 2k−1/22k-1/2. The basis is expressed solely in terms of GrG_r modes and it takes the form of simple exclusion conditions (being thus a quasi-particle-type basis). Its elements are in correspondence with (2k−1)(2k-1)-restricted jagged partitions. The generating functions of the latter provide novel fermionic forms for the characters of the irreducible representations in both Ramond and Neveu-Schwarz sectors.Comment: 12 page

    Seismic estimates of turbulent diffusivity and evidence of nonlinear internal wave forcing by geometric resonance in the South China Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 8063–8078, doi:10.1002/2017JC012690.The Luzon Passage generates some of the largest amplitude internal waves in the global ocean as the result of coupling between strong tides, strong stratification, and topography. These internal waves propagate into the South China Sea (SCS) and develop into soliton-like internal wave pulses that are observed by moored instruments and satellite backscatter data. Despite the observation of these waves, little is known of the mechanisms related to their evolution into nonlinear wave pulses. Using seismic data, we find evidence that the geometry of bathymetric conditions between the Heng-Chun and Lan-Yu ridges drive nonlinear internal wave pulse generation. We produce three seismic images and associated maps of turbulent diffusivity to investigate structure around the two ridges and into the SCS. We do not observe large amplitude soliton-like internal waves between the ridges, but do observe one outside the ridges, a finding in accord with the interpretation that wave pulses form due to geometrical resonance. Additionally, we find no evidence for lee wave activity above the ridges in either the seismic images or associated turbulence maps, suggesting an unlikelihood of hydraulic jump driven generation around the ridges. Our results show increased levels of turbulent diffusivity (1) in deep water below 1000 m, (2) associated with internal tide pulses, and (3) near the steep slopes of the Heng-Chun and Lan-Yu ridges as explored in this paper.NSF Grant Number: 0648620; ONR/DEPSCoR Grant Grant Number: DODONR400272018-04-2

    Mapping turbulent diffusivity associated with oceanic internal lee waves offshore Costa Rica

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Science 12 (2016): 601-612, doi:10.5194/os-12-601-2016.Breaking internal waves play a primary role in maintaining the meridional overturning circulation. Oceanic lee waves are known to be a significant contributor to diapycnal mixing associated with internal wave dissipation, but direct measurement is difficult with standard oceanographic sampling methods due to the limited spatial extent of standing lee waves. Here, we present an analysis of oceanic internal lee waves observed offshore eastern Costa Rica using seismic imaging and estimate the turbulent diffusivity via a new seismic slope spectrum method that extracts diffusivities directly from seismic images, using tracked reflections only to scale diffusivity values. The result provides estimates of turbulent diffusivities throughout the water column at scales of a few hundred meters laterally and 10 m vertically. Synthetic tests demonstrate the method's ability to resolve turbulent structures and reproduce accurate diffusivities. A turbulence map of our seismic section in the western Caribbean shows elevated turbulent diffusivities near rough seafloor topography as well as in the mid-water column where observed lee wave propagation terminates. Mid-water column hotspots of turbulent diffusivity show levels 5 times higher than surrounding waters and 50 times greater than typical open-ocean diffusivities. This site has steady currents that make it an exceptionally accessible laboratory for the study of lee-wave generation, propagation, and decay.This work was funded by NSF Grants 0405654 and 0648620, and ONR/DEPSCoR Grant DODONR4002

    Origin of the approximate universality of distributions in equilibrium correlated systems

    Get PDF
    We propose an interpretation of previous experimental and numerical experiments, showing that for a large class of systems, distributions of global quantities are similar to a distribution originally obtained for the magnetization in the 2D-XY model . This approach, developed for the Ising model, is based on previous numerical observations. We obtain an effective action using a perturbative method, which successfully describes the order parameter fluctuations near the phase transition. This leads to a direct link between the D-dimensional Ising model and the XY model in the same dimension, which appears to be a generic feature of many equilibrium critical systems and which is at the heart of the above observations.Comment: To appear in Europhysics Letter
    • …
    corecore