22,443 research outputs found

    Determination of Critical Exponents in Nuclear Systems

    Full text link
    Signatures of critical behaviour in nuclear fragmentation are often based on arguments from percolation theory. We demonstrate with general thermodynamic considerations and studies of the Ising model that the reliance on percolation as a reference model bears the risk of missing parts of the essential physics.Comment: 10 pages, TeX with 1 included figure; Proceedings of the 1st Catania Relativistic Ion Studies: Critical Phenomena and Collective Observables, Acicastello, May 27-31, 1996, to be published by World Scientific Publ. Co.; also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    The Diffraction Model and its Applicability for Wakefield Calculations

    Get PDF
    The operation of a Free Electron Laser (FEL) in the ultraviolet or in the X-ray regime requires the acceleration of electron bunches with an rms length of 25 to 50 micro meters. The wakefields generated by these sub picosecond bunches extend into the frequency range well beyond the threshold for Cooper pair breakup (about 750 GHz) in superconducting niobium at 2 K. It is shown, that the superconducting cavities can indeed be operated with 25 micro meter bunches without suffering a breakdown of superconductivity (quench), however at the price of a reduced quality factor and an increased heat transfer to the superfluid helium bath. This was first shown by wakefield calculations based on the diffraction model. In the meantime a more conventional method of computing wake fields in the time domain by numerical methods was developed and used for the wakefield calculations. Both methods lead to comparable results: the operation of TESLA with 25 micro meter bunches is possible but leads to an additional heat load due to the higher order modes (HOMs). Therefore HOM dampers for these high frequencies are under construction. These dampers are located in the beam pipes between the 9-cell cavities. So it is of interest, if there are trapped modes in the cavity due to closed photon orbits. In this paper we investigate the existence of trapped modes and the distribution of heat load over the surface of the TESLA cavity by numerical photon tracking.Comment: Linac2000 conference paper ID No. MOE0

    Proton radii of 4,6,8He isotopes from high-precision nucleon-nucleon interactions

    Full text link
    Recently, precision laser spectroscopy on 6He atoms determined accurately the isotope shift between 4He and 6He and, consequently, the charge radius of 6He. A similar experiment for 8He is under way. We have performed large-scale ab initio calculations for 4,6,8He isotopes using high-precision nucleon-nucleon (NN) interactions within the no-core shell model (NCSM) approach. With the CD-Bonn 2000 NN potential we found point-proton root-mean-square (rms) radii of 4He and 6He 1.45(1) fm and 1.89(4), respectively, in agreement with experiment and predict the 8He point proton rms radius to be 1.88(6) fm. At the same time, our calculations show that the recently developed nonlocal INOY NN potential gives binding energies closer to experiment, but underestimates the charge radii.Comment: 5 pages, 9 figure

    Quantum Tunneling and Phase Transitions in Spin Systems with an Applied Magnetic Field

    Get PDF
    Transitions from classical to quantum behaviour in a spin system with two degenerate ground states separated by twin energy barriers which are asymmetric due to an applied magnetic field are investigated. It is shown that these transitions can be interpreted as first- or second-order phase transitions depending on the anisotropy and magnetic parameters defining the system in an effective Lagrangian description.Comment: 18 pages, 7 figure

    Brief Studies

    Get PDF
    The Issue Involved in the Lutheran Rejection of Consubstantiation \u27Aλλ\u27 in Mathew 20:23 and Mark 10:4

    Fine Structure of the 1s3p ^3P_J Level in Atomic ^4He: Theory and Experiment

    Full text link
    We report on a theoretical calculation and a new experimental determination of the 1s3p ^3P_J fine structure intervals in atomic ^4He. The values from the theoretical calculation of 8113.730(6) MHz and 658.801(6) MHz for the nu_{01} and nu_{12} intervals, respectively, disagree significantly with previous experimental results. However, the new laser spectroscopic measurement reported here yields values of 8113.714(28) MHz and 658.810(18) MHz for these intervals. These results show an excellent agreement with the theoretical values and resolve the apparent discrepancy between theory and experiment.Comment: 9 pages, 3 figure
    corecore