30,956 research outputs found
A New Linear Inductive Voltage Adder Driver for the Saturn Accelerator
Saturn is a dual-purpose accelerator. It can be operated as a large-area
flash x-ray source for simulation testing or as a Z-pinch driver especially for
K-line x-ray production. In the first mode, the accelerator is fitted with
three concentric-ring 2-MV electron diodes, while in the Z-pinch mode the
current of all the modules is combined via a post-hole convolute arrangement
and driven through a cylindrical array of very fine wires. We present here a
point design for a new Saturn class driver based on a number of linear
inductive voltage adders connected in parallel. A technology recently
implemented at the Institute of High Current Electronics in Tomsk (Russia) is
being utilized[1].
In the present design we eliminate Marx generators and pulse-forming
networks. Each inductive voltage adder cavity is directly fed by a number of
fast 100-kV small-size capacitors arranged in a circular array around each
accelerating gap. The number of capacitors connected in parallel to each cavity
defines the total maximum current. By selecting low inductance switches,
voltage pulses as short as 30-50-ns FWHM can be directly achieved.Comment: 3 pages, 4 figures. This paper is submitted for the 20th Linear
Accelerator Conference LINAC2000, Monterey, C
Single and Many Particle Correlation Functions and Uniform Phase Bases for Strongly Correlated Systems
The need for suitable many or infinite fermion correlation functions to
describe some low dimensional strongly correlated systems is discussed. This is
linked to the need for a correlated basis, in which the ground state may be
postive definite, and in which single particle correlations may suffice. A
particular trial basis is proposed, and applied to a certain quasi-1D model.
The model is a strip of the 2D square lattice wrapped around a cylinder, and is
related to the ladder geometries, but with periodic instead of open boundary
conditions along the edges. Analysis involves a novel mean-field approach and
exact diagonalisation. The model has a paramagnetic region and a Nagaoka
ferromagnetic region. The proposed basis is well suited to the model, and
single particle correlations in it have power law decay for the paramagnet,
where the charge motion is qualitatively hard core bosonic. The mean field also
leads to a BCS-type model with single particle long range order.Comment: 23 pages, in plain tex, 12 Postscript figures included. Accepted for
publication in J.Physics : Condensed Matte
Pragmatic View of Short-Baseline Neutrino Oscillations
We present the results of global analyses of short-baseline neutrino
oscillation data in 3+1, 3+2 and 3+1+1 neutrino mixing schemes. We show that
the data do not allow us to abandon the simplest 3+1 scheme in favor of the
more complex 3+2 and 3+1+1 schemes. We present the allowed region in the 3+1
parameter space, which is located at between 0.82 and 2.19
at . The case of no oscillations is disfavored by about
, which decreases dramatically to about if the LSND data are
not considered. Hence, new high-precision experiments are needed to check the
LSND signal.Comment: 6 pages. Final version published in Phys. Rev. D 88, 073008 (2013
Short-Baseline Electron Neutrino Oscillation Length After Troitsk
We discuss the implications for short-baseline electron neutrino
disappearance in the 3+1 mixing scheme of the recent Troitsk bounds on the
mixing of a neutrino with mass between 2 and 100 eV. Considering the Troitsk
data in combination with the results of short-baseline nu_e and antinu_e
disappearance experiments, which include the reactor and Gallium anomalies, we
derive a 2 sigma allowed range for the effective neutrino squared-mass
difference between 0.85 and 43 eV^2. The upper bound implies that it is likely
that oscillations in distance and/or energy can be observed in radioactive
source experiments. It is also favorable for the ICARUS@CERN experiment, in
which it is likely that oscillations are not washed-out in the near detector.
We discuss also the implications for neutrinoless double-beta decay.Comment: 5 pages. Final version published in Phys.Rev. D87 (2013) 01300
Quantum speed limit for relativistic spin-0 and spin-1 bosons on commutative and noncommutative planes
Quantum speed limits of relativistic charged spin-0 and spin-1 bosons in the
background of a homogeneous magnetic field are studied on both commutative and
oncommutative planes. We show that, on the commutative plane, the average
speeds of wave packets along the radial direction during the interval in which
a quantum state evolving from an initial state to the orthogonal final one can
not exceed the speed of light, regardless of the intensities of the magnetic
field. However, due to the noncommutativity, the average speeds of the wave
packets on noncommutative plane will exceed the speed of light in vacuum
provided the intensity of the magnetic field is strong enough. It is a clear
signature of violating Lorentz invariance in quantum mechanics region.Comment: 8 pages, no figures. arXiv admin note: text overlap with
arXiv:1702.0316
Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations and -decay half-lives
The self-consistent quasiparticle random-phase approximation (QRPA) approach
is formulated in the canonical single-nucleon basis of the relativistic
Hatree-Fock-Bogoliubov (RHFB) theory. This approach is applied to study the
isobaric analog states (IAS) and Gamov-Teller resonances (GTR) by taking Sn
isotopes as examples. It is found that self-consistent treatment of the
particle-particle residual interaction is essential to concentrate the IAS in a
single peak for open-shell nuclei and the Coulomb exchange term is very
important to predict the IAS energies. For the GTR, the isovector pairing can
increase the calculated GTR energy, while the isoscalar pairing has an
important influence on the low-lying tail of the GT transition. Furthermore,
the QRPA approach is employed to predict nuclear -decay half-lives. With
an isospin-dependent pairing interaction in the isoscalar channel, the
RHFB+QRPA approach almost completely reproduces the experimental -decay
half-lives for nuclei up to the Sn isotopes with half-lives smaller than one
second. Large discrepancies are found for the Ni, Zn, and Ge isotopes with
neutron number smaller than , as well as the Sn isotopes with neutron
number smaller than . The potential reasons for these discrepancies are
discussed in detail.Comment: 34 pages, 14 figure
- …