7,537 research outputs found

    Possible role of 3He impurities in solid 4He

    Full text link
    We use a quantum lattice gas model to describe essential aspects of the motion of 4He atoms and of 3He impurities in solid 4He. This study suggests that 3He impurities bind to defects and promote 4He atoms to interstitial sites which can turn the bosonic quantum disordered crystal into a metastable supersolid. It is suggested that defects and interstitial atoms are produced during the solid 4He nucleation process where the role of 3He impurities (in addition to the cooling rate) is known to be important even at very small (1 ppm) impurity concentration. It is also proposed that such defects can form a glass phase during the 4He solid growth by rapid cooling.Comment: 4 two-column Revtex pages, 4 figures. Europhysics Letters (in Press

    Cold three-body collisions in hydrogen-hydrogen-alkali atomic system

    Full text link
    We have studied hydrogen-hydrogen-alkali three-body systems in the adiabatic hyperspherical representation. For the spin-stretched case, there exists a single XXH molecular state when XX is one of the bosonic alkali atoms: 7^7Li, 23^{23}Na, 39^{39}K, 87^{87}Rb and 133^{133}Cs. As a result, the {\em only} recombination process is the one that leads to formation of XXH molecules, H+H+XX\rightarrowXXH+H, and such molecules will be stable against vibrational relaxation. We have calculated the collision rates for recombination and collision induced dissociation as well as the elastic cross-sections for H+XXH collisions up to a temperature of 0.5 K, including the partial wave contributions from JΠJ^\Pi=0+0^+ to 55^-. We have also found that there is just one three-body bound state for such systems for JΠJ^\Pi=0+0^+ and no bound states for higher angular momenta.Comment: 10 pages, 5 figures, 4 table

    Statistical Properties of Interacting Bose Gases in Quasi-2D Harmonic Traps

    Full text link
    The analytical probability distribution of the quasi-2D (and purely 2D) ideal and interacting Bose gas are investigated by using a canonical ensemble approach. Using the analytical probability distribution of the condensate, the statistical properties such as the mean occupation number and particle number fluctuations of the condensate are calculated. Researches show that there is a continuous crossover of the statistical properties from a quasi-2D to a purely 2D ideal or interacting gases. Different from the case of a 3D Bose gas, the interaction between atoms changes in a deep way the nature of the particle number fluctuations.Comment: RevTex, 10pages, 4 figures, E-mail: [email protected]

    Decoherence due to three-body loss and its effect on the state of a Bose-Einstein condensate

    Full text link
    A Born-Markov master equation is used to investigate the decoherence of the state of a macroscopically occupied mode of a cold atom trap due to three-body loss. In the large number limit only coherent states remain pure for times longer than the decoherence time: the time it takes for just three atoms to be lost from the trap. For large numbers of atoms (N>10^4) the decoherence time is found to be much faster than the phase collapse time caused by intra-trap atomic collisions

    Bound states of three and four resonantly interacting particles

    Full text link
    We present an exact diagrammatic approach for the problem of dimer-dimer scattering in 3D for dimers being a resonant bound state of two fermions in a spin-singlet state, with corresponding scattering length aFa_F. Applying this approach to the calculation of the dimer-dimer scattering length aBa_B, we recover exactly the already known result aB=0.60aFa_B=0.60 a_F. We use the developed approach to obtain new results in 2D for fermions as well as for bosons. Namely, we calculate bound state energies for three bbbbbb and four bbbbbbbb resonantly interacting bosons in 2D. For the case of resonant interaction between fermions and bosons we calculate exactly bound state energies of the following complexes: two bosons plus one fermion bbfbbf, two bosons plus two fermions bfbfbf_{\uparrow}bf_{\downarrow}, and three bosons plus one fermion bbbfbbbf.Comment: 10 pages, 9 figure

    CP violation and the 4th generation

    Get PDF
    Within the Standard model with the 4th generation quarks b' and t' we have analyzed CP-violating flavor changing neutral current processes t -> cX; b'-> sX, b'-> bX,t'-> cX, and t'-> tX, with X=Z,H,gamma,g, by constructing and employing global, unique fit for the 4th generation mass mixing matrix CKM4 at 300 < m_t' < 700 GeV. All quantities appearing in the CKM4 were subject to our fitting procedure. We have found that our fit produces the following CP partial rate asymmetry dominance: a_CP(b'-> s(Z,H,gamma,g))= (90,73,52,30)%, at m_t' ~ 300,300,380,400 GeV, respectively. From the experimental point of view the best decay mode, out of the above four, is certainly b'-> s gamma, because of the presence of a clean high energy single final state photon. We have also obtained relatively large a_CP(t -> c g) ~ 15 (10)% for t' running in the loops with the mass m_t'= 650(500) GeV. There are fair chances that the 4th generation quarks will be discovered at Tevatron or LHC and that some of their decay rates shall be measured. If b' and t' exist at energies we assumed, with well executed tagging, large a_CP could be found too.Comment: 19 pages, 12 figures, some of them new, references added, minor corrections in the text, version to appear in PR

    Quantum Kinetic Theory VI: The Growth of a Bose-Einstein Condensate

    Full text link
    A detailed analysis of the growth of a BEC is given, based on quantum kinetic theory, in which we take account of the evolution of the occupations of lower trap levels, and of the full Bose-Einstein formula for the occupations of higher trap levels, as well as the Bose stimulated direct transfer of atoms to the condensate level introduced by Gardiner et al. We find good agreement with experiment at higher temperatures, but at lower temperatures the experimentally observed growth rate is somewhat more rapid. We also confirm the picture of the ``kinetic'' region of evolution, introduced by Kagan et al., for the time up to the initiation of the condensate. The behavior after initiation essentially follows our original growth equation, but with a substantially increased rate coefficient. Our modelling of growth implicitly gives a model of the spatial shape of the condensate vapor system as the condensate grows, and thus provides an alternative to the present phenomenological fitting procedure, based on the sum of a zero-chemical potential vapor and a Thomas-Fermi shaped condensate. Our method may give substantially different results for condensate numbers and temperatures obtained from phenomentological fits, and indicates the need for more systematic investigation of the growth dynamics of the condensate from a supersaturated vapor.Comment: TeX source; 29 Pages including 26 PostScript figure

    Signal and noise of Diamond Pixel Detectors at High Radiation Fluences

    Full text link
    CVD diamond is an attractive material option for LHC vertex detectors because of its strong radiation-hardness causal to its large band gap and strong lattice. In particular, pixel detectors operating close to the interaction point profit from tiny leakage currents and small pixel capacitances of diamond resulting in low noise figures when compared to silicon. On the other hand, the charge signal from traversing high energy particles is smaller in diamond than in silicon by a factor of about 2.2. Therefore, a quantitative determination of the signal-to-noise ratio (S/N) of diamond in comparison with silicon at fluences in excess of 1015^{15} neq_{eq} cm2^{-2}, which are expected for the LHC upgrade, is important. Based on measurements of irradiated diamond sensors and the FE-I4 pixel readout chip design, we determine the signal and the noise of diamond pixel detectors irradiated with high particle fluences. To characterize the effect of the radiation damage on the materials and the signal decrease, the change of the mean free path λe/h\lambda_{e/h} of the charge carriers is determined as a function of irradiation fluence. We make use of the FE-I4 pixel chip developed for ATLAS upgrades to realistically estimate the expected noise figures: the expected leakage current at a given fluence is taken from calibrated calculations and the pixel capacitance is measured using a purposely developed chip (PixCap). We compare the resulting S/N figures with those for planar silicon pixel detectors using published charge loss measurements and the same extrapolation methods as for diamond. It is shown that the expected S/N of a diamond pixel detector with pixel pitches typical for LHC, exceeds that of planar silicon pixels at fluences beyond 1015^{15} particles cm2^{-2}, the exact value only depending on the maximum operation voltage assumed for irradiated silicon pixel detectors

    Adsorption and two-body recombination of atomic hydrogen on 3^3He-4^4He mixture films

    Full text link
    We present the first systematic measurement of the binding energy EaE_a of hydrogen atoms to the surface of saturated 3^3He-4^4He mixture films. EaE_a is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the population of the ground surface state of 3^3He grows from zero to 6×10146\times10^{14} cm2^{-2}, yielding the value 1.2(1)×10151.2(1)\times 10^{-15} K cm2^2 for the mean-field parameter of H-3^3He interaction in 2D. The experiments were carried out with overall 3^3He concentrations ranging from 0.1 ppm to 5 % as well as with commercial and isotopically purified 4^4He at temperatures 70...400 mK. Measuring by ESR the rate constants KaaK_{aa} and KabK_{ab} for second-order recombination of hydrogen atoms in hyperfine states aa and bb we find the ratio Kab/KaaK_{ab}/K_{aa} to be independent of the 3^3He content and to grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys. Rev. Let

    A semi-classical field method for the equilibrium Bose gas and application to thermal vortices in two dimensions

    Full text link
    We develop a semi-classical field method for the study of the weakly interacting Bose gas at finite temperature, which, contrarily to the usual classical field model, does not suffer from an ultraviolet cut-off dependence. We apply the method to the study of thermal vortices in spatially homogeneous, two-dimensional systems. We present numerical results for the vortex density and the vortex pair distribution function. Insight in the physics of the system is obtained by comparing the numerical results with the predictions of simple analytical models. In particular, we calculate the activation energy required to form a vortex pair at low temperature.Comment: 19 page
    corecore