536 research outputs found
Dissemination, resuspension, and filtration of carbon fibers
Carbon fiber transport was studied using mathematical models established for other pollution problems. It was demonstrated that resuspension is not a major factor contributing to the risk. Filtration and fragmentation tests revealed that fiber fragmentation shifts the fiber spectrum to shorter mean lengths in high velocity air handling systems
Partial interlaminar separation system for composites
This inventor relates to an interlaminar separation system for composites wherein a thin layer of a perforated foil film is interposed between adjacent laminae of a composite formed from prepreg tapes to thereby permit laminate adherence through the perforations and produce a composite structure having improved physical property characteristics
Failure mechanics in low-velocity impacts on thin composite plates
Eight-ply quasi-isotropic composite plates of Thornel 300 graphite in Narmco 5208 epoxy resin (T300/5208) were tested to establish the degree of equivalence between low-velocity impact and static testing. Both the deformation and failure mechanics under impact were representable by static indentation tests. Under low-velocity impacts such as tool drops, the dominant deformation mode of the plates was the first, or static, mode. Higher modes are excited on contact, but they decay significantly by the time the first-mode load reaches a maximum. The delamination patterns were observed by X-ray analysis. The areas of maximum delamination patterns were observed by X-ray analysis. The areas of maximum delamination coincided with the areas of highest peel stresses. The extent of delamination was similar for static and impact tests. Fiber failure damage was established by tensile tests on small fiber bundles obtained by deplying test specimens. The onset of fiber damage was in internal plies near the lower surface of the plates. The distribution and amount of fiber damage was similar fo impact and static tests
The vulnerability of electric equipment to carbon fibers of mixed lengths: An analysis
The susceptibility of a stereo amplifier to damage from a spectrum of lengths of graphite fibers was calculated. A simple analysis was developed by which such calculations can be based on test results with fibers of uniform lengths. A statistical analysis was applied for the conversation of data for various logical failure criteria
Toughening of graphite-epoxy composites by interlaminar perforated Mylar films
Fracture and notch strength tests of graphite-epoxy composites showed that unidirectional lay-ups generally exhibit longitudinal cracking before failure, whereas multidirectional lay-ups fail transversely with little longitudinal cracking. A simple qualitative analysis suggested that the higher matrix shear stresses in unidirectional materials cause the longitudinal cracking, and that this cracking was responsible for the high toughness of unidirectional composites. In a series of comparative tests, the interlaminar strength of multi-directional composites was reduced by placing perforated Mylar films between laminae; tests on notched and slotted specimens showed that the interlaminar films promoted delamination and longitudinal cracking near the notches and that, as a result, toughness, notch strength, and impact strength were substantially increased
Crack-closure and crack-growth measurements in surface-flawed titanium alloy Ti6Al-4V
The crack-closure and crack-growth characteristics of the titanium alloy Ti-6Al-4V were determined experimentally on surface-flawed plate specimens. Under cyclic loading from zero to tension, cracks deeper than 1 mm opened at approximately 50 percent of the maximum load. Cracks shallower than 1 mm opened at higher loads. The correlation between crack-growth rate and the total stress-intensity range showed a lower threshold behavior. This behavior was attributed to the high crack-opening loads at short cracks because the lower threshold was much less evident in correlations between the crack-growth rates and the effective stress-intensity range
Slow crack growth in spinel in water
Magnesium aluminate spinel was tested in a water environment at room temperature to establish its slow crack-growth behavior. Ring specimens with artificial flaws on the outside surface were loaded hydraulically on the inside surface. The time to failure was measured. Various precracking techniques were evaluated and multiple precracks were used to minimize the scatter in the static fatigue tests. Statistical analysis techniques were developed to determine the strength and crack velocities for a single flaw. Slow crack-growth rupture was observed at stress intensities as low as 70 percent of K sub c. A strengthening effect was observed in specimens that had survived long-time static fatigue tests
Ambient temperature fatigue tests of elements of an actively cooled honeycomb sandwich structural panel
Elements of an actively cooled structural panel for a hypersonic aircraft have been investigated for fatigue characteristics. The study involved a bonded honeycomb sandwich panel with d-shaped coolant tubes. The curved portion of these tubes was embedded in the honeycomb, and the flat portion was bonded or soldered to the inner surface of the outer skin. The elements examined were two plain skin specimens (aluminum alloy); two specimens with skins attached to manifolds and tubes (one specimen was bonded, the other soldered); and a specimen representative of a corner section of the complete cooled sandwich. Sinusoidal loads were applied to all specimens. The honeycomb sandwich specimen was loaded in both tension and compression; the other specimens were loaded in tension only. The cooling tubes were pressurized with oil throughout the fatigue tests. The most significant results of these tests follow: All specimens exceeded their design life of 20,000 cycles without damage. Crack growth rates obtained in the plain skin specimens were used to determine the crack growth characteristics of aluminum alloy. Cracks in skins either bonded or soldered to cooling tubes propagated past the tubes without penetration. The coolant tubes served as crack arresters and temporarily stopped crack growth when a crack reached a tube-skin interface. The honeycomb core demonstrated that it could contain leakage from a tube
Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact
A geometrically nonlinear finite-element analysis was developed to calculate the strain energy released by delamination plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, G sub I, and shear sliding, G sub II, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding (G sub II) was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, G sub I, for a near-surface delamination can be as high as 0.5G sub II and can contribute significantly to the delamination growth
Prediction of impact force and duration during low velocity impact on circular composite laminates
Two simple and improved models--energy-balance and spring-mass--were developed to calculate impact force and duration during low velocity impact of circular composite plates. Both models include the contact deformation of the plate and the impactor as well as bending, transverse shear, and membrane deformations of the plate. The plate was transversely isotropic graphite/epoxy composite laminate and the impactor was a steel sphere. Calculated impact forces from the two analyses agreed with each other. The analyses were verified by comparing the results with reported test data
- …