14,021 research outputs found

    Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes

    Get PDF
    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt

    Functioning of inorganic/organic battery separators in silver-zinc cells

    Get PDF
    The results of three experimental studies related to the inorganic/organic battery separator operating mechanism are described: saponification of the plasticizer, resistivity of the simulated separators, and zincate diffusion through the separators. The inorganic/organic separator appears to be a particular example of a general class of ionic conducting films composed of inorganic fillers and/or substrates bonded together by an organic polymer containing an incompatible plasticizer that may be leached by the electrolyte. The I/O separator functions as a microporous film of varying tortuosity with essentially no specific chemical inhibition to zincate diffusion

    Radiochemical synthesis of pure anhydrous metal halides

    Get PDF
    Method uses radiation chemistry as practical tool for inorganic preparations and in particular deposition of metals by irradiation of their aqueous metal salt solutions with high energy electrons. Higher valence metal halide is dissolved in organic liquid and exposed to high energy electrons. This causes metal halide to be reduced to a lower valence metal halide

    Method of cross-linking polyvinyl alcohol and other water soluble resins

    Get PDF
    A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries

    Production of pure metals

    Get PDF
    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner

    The Magnetism of Ships

    Get PDF

    Trapping of hydrogen atoms in X-irradiated salts at room temperature and the decay kinetics

    Get PDF
    The salts (hypophosphites, formates, a phosphite, a phosphate, and an oxalate) were X-irradiated, whereby hydrogen formed chemically by a radiolytic process becomes trapped in the solid. By room temperature vacuum extraction, the kinetics for the evolution of this trapped hydrogen was studied mass spectrometrically. All salts except two exhibited second-order kinetics. The two exceptions (NaH2PO2(H2O) and K2HPO4) showed first-order kinetics. Based on experimental results, the escape of hydrogen involves three steps: the diffusion of hydrogen atoms from the bulk to the surface, association of these atoms on the surface (rate controlling step for second-order hydrogen evolution), and the desorption of molecular hydrogen from the surface. The hydrogen does not escape if the irradiated salt is stored in air, apparently because adsorbed air molecules occupy surface sites required in the escape mechanism

    Developable images produced by X-rays using the nickel-hypophosphite system. 3: The latent image and trapped hydrogen

    Get PDF
    The hydrogen trapped in X-irradiated hypophosphites, phosphites, formates, oxalates, a phosphate, and some organic compounds was vacuum extracted and measured quantitatively with a mass spectrometer. After extraction, normally developable salts were found to be still developable. Thus, the latent image is not the trapped hydrogen but a species of the type HPO(-)2. The amplification factor for irradiated hypophosphites is about 100. A narrow range of wavelengths (at about 0.07 nm, 0.7 A) is responsible for the formation of the latent image

    Developable Images Produced by X-rays Using the Nickel Hypophosphite System. 1 X-ray Sensitive Salts

    Get PDF
    Twenty-eight crystalline salts were X-irradiated and treated with an ammoniacal nickel hypophosphite solution. Treatment (development) of six of the salts resulted in precipitation of nickel metal. The developable salts were four hypophosphites, sodium phosphite, and nickel formate. A mechanism is proposed for the process based on the postulate that micro amounts of hydrogen atoms are formed during the radiation step. During development, these hydrogen atoms cause the formation of nucleation sites of nickel metal. In turn, these sites catalyze further reduction of the nickel cations by the hypophosphite. The results are discussed in terms of application of the process to the formation of developable latent images

    The application of semiconductors to quasi- optical isolators for use at submillimeter wavelengths

    Get PDF
    Semiconductor application to quasi-optical isolators - nonreciprocal reflection beam isolator and far infrared isolators using Faraday rotatio
    • …
    corecore