428 research outputs found

    Combustion detector

    Get PDF
    A device has been developed for generating a rapid response signal upon the radiation-emitting combustion reaction of certain gases in order to provide a means for the detection and identification of such reaction and concurrently discriminate against spurious signals. This combustion might be the first stage of a coal mine explosion process, and thereby this device could provide a warning of the impending explosion in time to initiate quenching action. This device has the capability of distinguishing between the light emitted from a combustion reaction and the light emitted by miners' lamps, electric lamps, welding sparks or other spurious events so that the quenching mechanism is triggered only when an explosion-initiating combustion occurs

    Stratospheric dynamics and transport studies

    Get PDF
    A three dimensional General Circulation Model/Transport Model is used to simulate stratospheric circulation and constituent distributions. Model simulations are analyzed to interpret radiative, chemical, and dynamical processes and their mutual interactions. Concurrent complementary studies are conducted using both global satellite data and other appropriate data. Comparisons of model simulations and data analysis studies are used to aid in understanding stratospheric dynamics and transport processes and to assess the validity of current theory and models

    The interactive on-site inspection system: An information management system to support arms control inspections

    Get PDF
    The increasing use of on-site inspection (OSI) to meet the nation`s obligations with recently signed treaties requires the nation to manage a variety of inspection requirements. This document describes a prototype automated system to assist in the preparation and management of these inspections

    Zeroing in on more photons and gluons

    Full text link
    We discuss radiation zeros that are found in gauge tree amplitudes for processes involving multi-photon emission. Previous results are clarified by examples and by further elaboration. The conditions under which such amplitude zeros occur are identical in form to those for the single-photon zeros, and all radiated photons must travel parallel to each other. Any other neutral particle likewise must be massless (e.g. gluon) and travel in that common direction. The relevance to questions like gluon jet identification and computational checks is considered. We use examples to show how certain multi-photon amplitudes evade the zeros, and to demonstrate the connection to a more general result, the decoupling of an external electromagnetic plane wave in the ``null zone". Brief comments are made about zeros associated with other gauge-boson emission.Comment: 26 page

    Applicability constraints of the Equivalence Theorem

    Get PDF
    In this work we study the applicability of the Equivalence Theorem, either for unitary models or within an effective lagrangian approach. There are two types of limitations: the existence of a validity energy window and the use of the lowest order in the electroweak constants. For the first kind, we consider some methods, based on dispersion theory or the large NN limit, that allow us to extend the applicability. For the second, we have obtained numerical estimates of the effect of neglecting higher orders in the perturbative expansion.Comment: Final version to appear in Phys. Rev. D. Power counting and energy range estimates have been refined, improved referencing. 4 postscript figures, uses revtex. FT-UCM 1/9

    Numerical Modeling of Flow Control in a Boundary-Layer-Ingesting Offset Inlet Diffuser at Transonic Mach Numbers

    Get PDF
    This paper will investigate the validation of the NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as a baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet experiment conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a free-stream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the fanface diameter. The numerical simulations with and without tunnel walls are performed, quantifying tunnel wall effects on the BLI inlet flow. A comparison is made between the numerical simulations and the BLI inlet experiment for the baseline and VG vane cases at various inlet mass flow rates. A comparison is also made to a BLI inlet jet configuration for varying actuator mass flow rates at a fixed inlet mass flow rate. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCP avg, very well within the designed operating range of the BLI inlet. A comparison of the average total pressure recovery showed that the simulations were able to predict the trends but had a negative 0.01 offset when compared to the experimental levels. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion levels for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of the flow and that a misalignment of the vanes in the experiment could have resulted in this difference. The numerical simulations of the BLI inlet with jets showed good agreement with the circumferential inlet distortion levels for a range of jet actuator mass flow ratios at a fixed inlet mass flow rate. The CFD simulations for the jet case also predicted an average total pressure recovery offset that was 0.01 lower than the experiment as was seen in the baseline. Comparisons of the flow features for the jet cases revealed that the CFD predicted a much larger vortex at the engine fan-face when compare to the experiment
    corecore