1,264 research outputs found
Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging
We introduce a new dynamic light scattering method, termed photon correlation
imaging, which enables us to resolve the dynamics of soft matter in space and
time. We demonstrate photon correlation imaging by investigating the slow
dynamics of a quasi two-dimensional coarsening foam made of highly packed,
deformable bubbles and a rigid gel network formed by dilute, attractive
colloidal particles. We find the dynamics of both systems to be determined by
intermittent rearrangement events. For the foam, the rearrangements extend over
a few bubbles, but a small dynamical correlation is observed up to macroscopic
length scales. For the gel, dynamical correlations extend up to the system
size. These results indicate that dynamical correlations can be extremely
long-ranged in jammed systems and point to the key role of mechanical
properties in determining their nature.Comment: Published version (Phys. Rev. Lett. 102, 085702 (2009)) The Dynamical
Activity Mapsprovided as Supplementary Online Material are also available on
http://w3.lcvn.univ-montp2.fr/~lucacip/dam/movies.ht
Phylogeny of Prokaryotes and Chloroplasts Revealed by a Simple Composition Approach on All Protein Sequences from Complete Genomes Without Sequence Alignment
The complete genomes of living organisms have provided much information on their phylogenetic relationships. Similarly, the complete genomes of chloroplasts have helped to resolve the evolution of this organelle in photosynthetic eukaryotes. In this paper we propose an alternative method of phylogenetic analysis using compositional statistics for all protein sequences from complete genomes. This new method is conceptually simpler than and computationally as fast as the one proposed by Qi et al. (2004b) and Chu et al. (2004). The same data sets used in Qi et al. (2004b) and Chu et al. (2004) are analyzed using the new method. Our distance-based phylogenic tree of the 109 prokaryotes and eukaryotes agrees with the biologists tree of life based on 16S rRNA comparison in a predominant majority of basic branching and most lower taxa. Our phylogenetic analysis also shows that the chloroplast genomes are separated to two major clades corresponding to chlorophytes s.l. and rhodophytes s.l. The interrelationships among the chloroplasts are largely in agreement with the current understanding on chloroplast evolution
Stability problem for the torque-free gyrostat by using algebraic methods
We apply an algebraic method for studying the stability with respect to a set
of conserved quantities for the problem of torque-free gyrostat. If the
conditions of this algebraic method are not fulfilled then the Lyapunov
stability cannot be decided using the specified set of conserved quantities
Statistical Mechanics of Glass Formation in Molecular Liquids with OTP as an Example
We extend our statistical mechanical theory of the glass transition from
examples consisting of point particles to molecular liquids with internal
degrees of freedom. As before, the fundamental assertion is that super-cooled
liquids are ergodic, although becoming very viscous at lower temperatures, and
are therefore describable in principle by statistical mechanics. The theory is
based on analyzing the local neighborhoods of each molecule, and a statistical
mechanical weight is assigned to every possible local organization. This
results in an approximate theory that is in very good agreement with
simulations regarding both thermodynamical and dynamical properties
Evolutionary distances in the twilight zone -- a rational kernel approach
Phylogenetic tree reconstruction is traditionally based on multiple sequence
alignments (MSAs) and heavily depends on the validity of this information
bottleneck. With increasing sequence divergence, the quality of MSAs decays
quickly. Alignment-free methods, on the other hand, are based on abstract
string comparisons and avoid potential alignment problems. However, in general
they are not biologically motivated and ignore our knowledge about the
evolution of sequences. Thus, it is still a major open question how to define
an evolutionary distance metric between divergent sequences that makes use of
indel information and known substitution models without the need for a multiple
alignment. Here we propose a new evolutionary distance metric to close this
gap. It uses finite-state transducers to create a biologically motivated
similarity score which models substitutions and indels, and does not depend on
a multiple sequence alignment. The sequence similarity score is defined in
analogy to pairwise alignments and additionally has the positive semi-definite
property. We describe its derivation and show in simulation studies and
real-world examples that it is more accurate in reconstructing phylogenies than
competing methods. The result is a new and accurate way of determining
evolutionary distances in and beyond the twilight zone of sequence alignments
that is suitable for large datasets.Comment: to appear in PLoS ON
Just how versatile are domains?
<p>Abstract</p> <p>Background</p> <p>Creating new protein domain arrangements is a frequent mechanism of evolutionary innovation. While some domains always form the same combinations, others form many different arrangements. This ability, which is often referred to as versatility or promiscuity of domains, its a random evolutionary model in which a domain's promiscuity is based on its relative frequency of domains.</p> <p>Results</p> <p>We show that there is a clear relationship across genomes between the promiscuity of a given domain and its frequency. However, the strength of this relationship differs for different domains. We thus redefine domain promiscuity by defining a new index, <it>DV I </it>("domain versatility index"), which eliminates the effect of domain frequency. We explore links between a domain's versatility, when unlinked from abundance, and its biological properties.</p> <p>Conclusion</p> <p>Our results indicate that domains occurring as single domain proteins and domains appearing frequently at protein termini have a higher <it>DV I</it>. This is consistent with previous observations that the evolution of domain re-arrangements is primarily driven by fusion of pre-existing arrangements and single domains as well as loss of domains at protein termini. Furthermore, we studied the link between domain age, defined as the first appearance of a domain in the species tree, and the <it>DV I</it>. Contrary to previous studies based on domain promiscuity, it seems as if the <it>DV I </it>is age independent. Finally, we find that contrary to previously reported findings, versatility is lower in Eukaryotes. In summary, our measure of domain versatility indicates that a random attachment process is sufficient to explain the observed distribution of domain arrangements and that several views on domain promiscuity need to be revised.</p
Lateral Gene Transfer (LGT) between Archaea and Escherichia coli is a contributor to the emergence of novel infectious disease
BACKGROUND: Lateral gene transfer is the major mechanism for acquisition of new virulence genes in pathogens. Recent whole genome analyses have suggested massive gene transfer between widely divergent organisms. PRESENTATION OF THE HYPOTHESIS: Archeal-like genes acting as virulence genes are present in several pathogens and genomes contain a number of archaeal-like genes of unknown function. Archaea, by virtue of their very different evolutionary history and different environment, provide a pool of potential virulence genes to bacterial pathogens. TESTING THE HYPOTHESIS: We can test this hypothesis by 1)identifying genes likely to have been transferred (directly or indirectly) to E. coli O157:H7 from archaea; 2)investigating the distribution of similar genes in pathogens and non-pathogens and 3)performing rigorous phylogenetic analyses on putative transfers. IMPLICATIONS OF THE HYPOTHESIS: Although this hypothesis focuses on archaea and E. coli, it will serve as a model having broad applicability to a number of pathogenic systems. Since no archaea are known vertebrate pathogens, archaeal-like transferred genes that are associated with virulence in bacteria represent a clear model for the emergence of virulence genes
PHASES Differential Astrometry and Iodine Cell Radial Velocities of the kappa Pegasi Triple Star System
kappa Pegasi is a well-known, nearby triple star system. It consists of a
``wide'' pair with semi-major axis 235 milli-arcseconds, one component of which
is a single-line spectroscopic binary (semi-major axis 2.5 milli-arcseconds).
Using high-precision differential astrometry and radial velocity observations,
the masses for all three components are determined and the relative
inclinations between the wide and narrow pairs' orbits is found to be 43.8 +/-
3.0 degrees, just over the threshold for the three body Kozai resonance. The
system distance is determined to 34.60 +/- 0.21 parsec, and is consistent with
trigonometric parallax measurements.Comment: Accepted for publication in ApJ, complete versions of tables 2 and 4
can be found at http://stuff.mit.edu/~matthew1/kapPegTables
- …