11,589 research outputs found

    Swimming in curved space or The Baron and the cat

    Full text link
    We study the swimming of non-relativistic deformable bodies in (empty) static curved spaces. We focus on the case where the ambient geometry allows for rigid body motions. In this case the swimming equations turn out to be geometric. For a small swimmer, the swimming distance in one stroke is determined by the Riemann curvature times certain moments of the swimmer.Comment: 19 pages 6 figure

    Spinning test particles and clock effect in Schwarzschild spacetime

    Full text link
    We study the behaviour of spinning test particles in the Schwarzschild spacetime. Using Mathisson-Papapetrou equations of motion we confine our attention to spatially circular orbits and search for observable effects which could eventually discriminate among the standard supplementary conditions namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the world line chosen for the multipole reduction and whose unit tangent we denote as UU is a circular orbit then also the generalized momentum PP of the spinning test particle is tangent to a circular orbit even though PP and UU are not parallel four-vectors. These orbits are shown to exist because the spin induced tidal forces provide the required acceleration no matter what supplementary condition we select. Of course, in the limit of a small spin the particle's orbit is close of being a circular geodesic and the (small) deviation of the angular velocities from the geodesic values can be of an arbitrary sign, corresponding to the possible spin-up and spin-down alignment to the z-axis. When two spinning particles orbit around a gravitating source in opposite directions, they make one loop with respect to a given static observer with different arrival times. This difference is termed clock effect. We find that a nonzero gravitomagnetic clock effect appears for oppositely orbiting both spin-up or spin-down particles even in the Schwarzschild spacetime. This allows us to establish a formal analogy with the case of (spin-less) geodesics on the equatorial plane of the Kerr spacetime. This result can be verified experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum gravity, 200

    Innermost Stable Circular Orbit of a Spinning Particle in Kerr Spacetime

    Get PDF
    We study stability of a circular orbit of a spinning test particle in a Kerr spacetime. We find that some of the circular orbits become unstable in the direction perpendicular to the equatorial plane, although the orbits are still stable in the radial direction. Then for the large spin case ($S < \sim O(1)), the innermost stable circular orbit (ISCO) appears before the minimum of the effective potential in the equatorial plane disappears. This changes the radius of ISCO and then the frequency of the last circular orbit.Comment: 25 pages including 8 figure

    Tail-induced spin-orbit effect in the gravitational radiation of compact binaries

    Full text link
    Gravitational waves contain tail effects which are due to the back-scattering of linear waves in the curved space-time geometry around the source. In this paper we improve the knowledge and accuracy of the two-body inspiraling post-Newtonian (PN) dynamics and gravitational-wave signal by computing the spin-orbit terms induced by tail effects. Notably, we derive those terms at 3PN order in the gravitational-wave energy flux, and 2.5PN and 3PN orders in the wave polarizations. This is then used to derive the spin-orbit tail effects in the phasing through 3PN order. Our results can be employed to carry out more accurate comparisons with numerical-relativity simulations and to improve the accuracy of analytical templates aimed at describing the whole process of inspiral, merger and ringdown.Comment: Minor corrections. To be published in Physical Review

    Self-forces on extended bodies in electrodynamics

    Full text link
    In this paper, we study the bulk motion of a classical extended charge in flat spacetime. A formalism developed by W. G. Dixon is used to determine how the details of such a particle's internal structure influence its equations of motion. We place essentially no restrictions (other than boundedness) on the shape of the charge, and allow for inhomogeneity, internal currents, elasticity, and spin. Even if the angular momentum remains small, many such systems are found to be affected by large self-interaction effects beyond the standard Lorentz-Dirac force. These are particularly significant if the particle's charge density fails to be much greater than its 3-current density (or vice versa) in the center-of-mass frame. Additional terms also arise in the equations of motion if the dipole moment is too large, and when the `center-of-electromagnetic mass' is far from the `center-of-bare mass' (roughly speaking). These conditions are often quite restrictive. General equations of motion were also derived under the assumption that the particle can only interact with the radiative component of its self-field. These are much simpler than the equations derived using the full retarded self-field; as are the conditions required to recover the Lorentz-Dirac equation.Comment: 30 pages; significantly improved presentation; accepted for publication in Phys. Rev.

    Dynamics of test bodies with spin in de Sitter spacetime

    Full text link
    We study the motion of spinning test bodies in the de Sitter spacetime of constant positive curvature. With the help of the 10 Killing vectors, we derive the 4-momentum and the tensor of spin explicitly in terms of the spacetime coordinates. However, in order to find the actual trajectories, one needs to impose the so-called supplementary condition. We discuss the dynamics of spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.Comment: 11 pages, RevTex forma

    Post-Newtonian corrections to the motion of spinning bodies in NRGR

    Full text link
    In this paper we include spin and multipole moment effects in the formalism used to describe the motion of extended objects recently introduced in hep-th/0409156. A suitable description for spinning bodies is developed and spin-orbit, spin-spin and quadrupole-spin Hamiltonians are found at leading order. The existence of tidal, as well as self induced finite size effects is shown, and the contribution to the Hamiltonian is calculated in the latter. It is shown that tidal deformations start formally at O(v^6) and O(v^10) for maximally rotating general and compact objects respectively, whereas self induced effects can show up at leading order. Agreement is found for the cases where the results are known.Comment: 18 pages, 9 figures. Typos corrected, to appear in Physical Review
    • …
    corecore