222 research outputs found

    Cold-water corals and hydrochemistry - is there a unifying link?

    Get PDF
    Physical and chemical parameters were measured in five different regions of the Northeast Atlantic with knownoccurrences of cold-water coral reefs and mounds and in the Mediterranean, where these corals form livingcarpets over existing morphologies. In this study we analyzed 282 bottom water samples regarding delta13CDIC,delta18O, and DIC. The hydrochemical data reveal characteristic patterns and differences for cold-water coralsites with living coral communities and ongoing reef and mound growth at the Irish and Norwegian sites. Whilethe localities in the Mediterranean, in the Gulf of Cadiz, and off Mauritania show only patchy coral growth onmound-like reliefs and various substrates.The analysis of delta13C/delta18O reveals distinct clusters for the different regions and the respective bottomwater masses bathing the delta18O, and especially between delta13CDIC and DIC shows that DIC is a parameterwith high sensitivity to the mixing of bottom water masses. It varies distinctively between sites with livingreefs/mounds and sites with restricted patchy growth or dead corals. Results suggest that DIC and delta13CDICcan provide additional insights into the mixing of bottom water masses.Prolific cold-water coral growth forming giant biogenic structures plot into a narrow geochemical windowcharacterized by a variation of delta13CDIC between 0.45 and 0.79 per mille being associated with the water masshaving a density of sigma-theta of 27.50.15 kg m-3

    Sr/Ca ratios in cold-water corals - a ’low-resolution’ temperature archive?

    Get PDF
    One of the basic data to understand global change and past global changes is the measurement and the reconstruction of temperature of marine water masses. E.g. seawater temperature controls the density of seawater and in combination with salinity is the major driving force for the oceans circulation system. Geochemical investigations on cold-water corals Lophelia pertusa and Desmophyllum cristagalli indicated the potential of these organisms as high-resolution archives of environmental parameters from intermediate and deeper water masses (Adkins and Boyle 1997). Some studies tried to use cold-water corals as a high-resolution archive of temperature and salinity (Smith et al. 2000, 2002; Blamart et al. 2005; Lutringer et al. 2005). However, the fractionation of stable isotopes (delta18O and delta13C) and element ratios (Sr/Ca, Mg/Ca, U/Ca) are strongly influenced by vital effects (Shirai et al. 2005; Cohen et al. 2006), and difficult to interpret. Nevertheless, ongoing studies indicate the potential of a predominant temperature dependent fractionation of distinct isotopes and elements (e.g. Li/Ca, Montagna et al. 2008; U/Ca, Mg/Ca, delta18O, Lòpez Correa et al. 2008; delta88/86Sr, Rüggeberg et al. 2008).Within the frame of DFG-Project TRISTAN and Paläo-TRISTAN (Du 129/37-2 and 37-3) we investigated live-collected specimens of cold-water coral L. pertusa from all along the European continental margin (Northern and mid Norwegian shelves, Skagerrak, Rockall and Porcupine Bank, Galicia Bank, Gulf of Cadiz, Mediterranean Sea). These coral samples grew in waters characterized by temperatures between 6°C and 14°C. Electron Microprobe investigations along the growth direction of individual coral polyps were applied to determine the relationship between the incorporation of distinct elements (Sr, Ca, Mg, S). Cohen et al. (2006) showed for L.pertusa from the Kosterfjord, Skagerrak, that ~25% of the coral’s Sr/Ca ratio is related to temperature, while 75% are influenced by the calcification rate of the organism. However, the Sr/Ca-temperature relation of our L. pertusa specimens suggest, that mean values are more reliable for temperature reconstruction along a larger temperature range than local high-resolution investigations. Additionally, our results plot on same line of Sr/Ca-temperature relationship like tropical corals indicating a similar behaviour of element incorporation during calcification

    COCARDE: A research platform for a new look to ancient mounds

    Get PDF
    Carbonate mounds are important contributors of life in different settings, from warm-water to cold-water environments, and throughout geological history. Research on modern carbonate mounds over the last years made a major contribution to our overall understanding of these particular sedimentary systems. By looking to the modern carbonate mound community, some fundamental questions could be addressed, until now not yet explored in fossil mound settings.The international network COCARDE (Cold-Water Carbonate Reservoir Systems in Deep Environment) is a platform for exploring new insights in cold- and warm-water carbonate mound research of recent and ancient mound systems (http://www.cocarde.eu). One aim of the COCARDE network is to bring scientific communities together, to study recent carbonate mounds in midslope environments in the present ocean, and to investigate fossil mounds spanning the whole Phanerozoic time.Scientific challenges on modern and ancient carbonate mound systems got already well defined during two dedicated workshops of the COCARDE network: 1) the ESF Magellan COCARDEWorkshop in Fribourg, Switzerland, January 21-24, 2009, and 2) the ESF MiCROSYSTEMS – FWO COCARDE Flanders – ESF CHECREEF Workshop and Field Seminar, Oviedo, Spain, September 16–20, 2009.The wide spectrum of disciplines in geosciences and biology are summarized in the following five topics for the carbonate mound research: i) Palaeoenvironment; ii) The Microbial Filter; iii) Petrophysical Characterization; iv) Connectivity and Compartmentalization – the Fluid System; v) Advancing our Insight in Phanerozoic Reef Systems– the Slope Niche. One of the most important outcomes of these meetings was the identification of the need for combined research efforts on fossil and modern carbonate settings to provide the baseline reference standard for a better understanding of these exceptional systems and their potential as hydrocarbon reservoirs

    Alternative global Cretaceous paleogeography

    Get PDF
    Plate tectonic reconstructions for the Cretaceous have assumed that the major continental blocks—Eurasia, Greenland, North America, South America, Africa, India, Australia, and Antarctica—had separated from one another by the end of the Early Cretaceous, and that deep ocean passages connected the Pacific, Tethyan, Atlantic, and Indian Ocean basins. North America, Eurasia, and Africa were crossed by shallow meridional seaways. This classic view of Cretaceous paleogeography may be incorrect. The revised view of the Early Cretaceous is one of three large continental blocks— North America–Eurasia, South America–Antarctica-India-Madagascar-Australia; and Africa—with large contiguous land areas surrounded by shallow epicontinental seas. There was a large open Pacific basin, a wide eastern Tethys, and a circum- African Seaway extending from the western Tethys (“Mediterranean”) region through the North and South Atlantic into the juvenile Indian Ocean between Madagascar-India and Africa. During the Early Cretaceous the deep passage from the Central Atlantic to the Pacific was blocked by blocks of northern Central America and by the Caribbean plate. There were no deep-water passages to the Arctic. Until the Late Cretaceous the Atlantic-Indian Ocean complex was a long, narrow, sinuous ocean basin extending off the Tethys and around Africa. Deep passages connecting the western Tethys with the Central Atlantic, the Central Atlantic with the Pacific, and the South Atlantic with the developing Indian Ocean appeared in the Late Cretaceous. There were many island land areas surrounded by shallow epicontinental seas at high sea-level stands
    • …
    corecore