3,444 research outputs found

    Induced superfluidity of imbalanced Fermi gases near unitarity

    Get PDF
    The induced intraspecies interactions among the majority species, mediated by the minority species, is computed for a population-imbalanced two-component Fermi gas. Although the Feshbach-resonance mediated interspecies interaction is dominant for equal populations, leading to singlet s-wave pairing, we find that in the strongly imbalanced regime the induced intraspecies interaction leads to p-wave pairing and superfluidity of the majority species. Thus, we predict that the observed spin-polaron Fermi liquid state in this regime is unstable to p-wave superfluidity, in accordance with the results of Kohn and Luttinger, below a temperature that, near unitarity, we find to be within current experimental capabilities. Possible experimental signatures of the p-wave state using radio-frequency spectroscopy as well as density-density correlations after free expansion are presented.Comment: 15 pages, 13 figures, submitted to Phys. Rev.

    Identity of electrons and ionization equilibrium

    Full text link
    It is perhaps appropriate that, in a year marking the 90th anniversary of Meghnad Saha seminal paper (1920), new developments should call fresh attention to the problem of ionization equilibrium in gases. Ionization equilibrium is considered in the simplest "physical" model for an electronic subsystem of matter in a rarefied state, consisting of one localized electronic state in each nucleus and delocalized electronic states considered as free ones. It is shown that, despite the qualitative agreement, there is a significant quantitative difference from the results of applying the Saha formula to the degree of ionization. This is caused by the fact that the Saha formula corresponds to the "chemical" model of matter.Comment: 9 pages, 2 figure

    Angle-dependence of the Hall effect in HgBa2CaCu2O6 thin films

    Full text link
    Superconducting compounds of the family Hg-Ba-Ca-Cu-O have been the subject of intense study since the current record-holder for the highest critical temperature of a superconductor belongs to this class of materials. Thin films of the compound with two adjacent copper-oxide layers and a critical temperature of about 120 K were prepared by a two-step process that consists of the pulsed-laser deposition of precursor films and the subsequent annealing in mercury-vapor atmosphere. Like some other high-temperature superconductors, Hg-Ba-Ca-Cu-O exhibits a specific anomaly of the Hall effect, a double-sign change of the Hall coefficient close to the superconducting transition. We have investigated this phenomenon by measurements of the Hall effect at different angles between the magnetic field direction and the crystallographic c-axis. The results concerning the upper part of the transition, where the first sign change occurs, are discussed in terms of the renormalized fluctuation model for the Hall conductivity, adapted through the field rescaling procedure in order to take into account the arbitrary orientation of the magnetic field.Comment: to be published in Phys. Rev.

    High superconducting anisotropy and weak vortex pinning in Co doped LaFeAsO

    Full text link
    Here, we present an electrical transport study in single crystals of LaFe0.92_{0.92}Co0.08_{0.08}AsO (Tc≃9.1T_c \simeq 9.1 K) under high magnetic fields. In contrast to most of the previously reported Fe based superconductors, and despite its relatively low TcT_c, LaFe1−x_{1-x}Cox_xAsO shows a superconducting anisotropy which is comparable to those seen for instance in the cuprates or γH=Hc2ab/Hc2c=mc/mab≃9\gamma_H = H_{c2}^{ab}/H_{c2}^{c} = m_c/m_{ab} \simeq 9, where mc/mabm_c/m_{ab} is the effective mass anisotropy. Although, in the present case and as in all Fe based superconductors, γ→1\gamma \rightarrow 1 as T→0T \rightarrow 0. Under the application of an external field, we also observe a remarkable broadening of the superconducting transition particularly for fields applied along the inter-planar direction. Both observations indicate that the low dimensionality of LaFe1−x_{1-x}Cox_xAsO is likely to lead to a more complex vortex phase-diagram when compared to the other Fe arsenides and consequently, to a pronounced dissipation associated with the movement of vortices in a possible vortex liquid phase. When compared to, for instance, F-doped compounds pertaining to same family, we obtain rather small activation energies for the motion of vortices. This suggests that the disorder introduced by doping LaFeAsO with F is more effective in pinning the vortices than alloying it with Co.Comment: 7 figures, 7 pages, Phys. Rev. B (in press

    Quantum and classical resonant escapes of a strongly-driven Josephson junction

    Get PDF
    The properties of phase escape in a dc SQUID at 25 mK, which is well below quantum-to-classical crossover temperature TcrT_{cr}, in the presence of strong resonant ac driving have been investigated. The SQUID contains two Nb/Al-AlOx_{x} /Nb tunnel junctions with Josephson inductance much larger than the loop inductance so it can be viewed as a single junction having adjustable critical current. We find that with increasing microwave power WW and at certain frequencies ν\nu and ν\nu /2, the single primary peak in the switching current distribution, \textrm{which is the result of macroscopic quantum tunneling of the phase across the junction}, first shifts toward lower bias current II and then a resonant peak develops. These results are explained by quantum resonant phase escape involving single and two photons with microwave-suppressed potential barrier. As WW further increases, the primary peak gradually disappears and the resonant peak grows into a single one while shifting further to lower II. At certain WW, a second resonant peak appears, which can locate at very low II depending on the value of ν\nu . Analysis based on the classical equation of motion shows that such resonant peak can arise from the resonant escape of the phase particle with extremely large oscillation amplitude resulting from bifurcation of the nonlinear system. Our experimental result and theoretical analysis demonstrate that at T≪TcrT\ll T_{cr}, escape of the phase particle could be dominated by classical process, such as dynamical bifurcation of nonlinear systems under strong ac driving.Comment: 10 pages, 9 figures, 1 tabl

    Thermodynamics of a d-wave Superconductor Near a Surface

    Full text link
    We study the properties of an anisotropically paired superconductor in the presence of a specularly reflecting surface. The bulk stable phase of the superconducting order parameter is taken to have dx2−y2d_{x^2-y^2} symmetry. Contributions by order parameter components of different symmetries vanish in the bulk, but may enter in the vicinity of a wall. We calculate the self-consistent order parameter and surface free energy within the quasiclassical formulation of superconductivity. We discuss, in particular, the dependence of these quantities on the degree of order parameter mixing and the surface to lattice orientation. Knowledge of the thermodynamically stable order parameter near a surface is a necessary precondition for calculating measurable surface properties which we present in a companion paper.Comment: 12 pages of revtex text with 12 compressed and encoded figures. To appear in J. Low Temp. Phys., December, 199

    Competition of Spin-Fluctuations and Phonons in Superconductivity of ZrZn2

    Full text link
    It has been long suspected that spin fluctuations in the weak itinerant ferromagnet ZrZn2 may lead to a triplet superconductivity in this material. Here we point out another possibility, a spatially inhomogeneous singlet superconducting state (a Fulde-Ferrell-Larkin-Ovchinnikov state). We report detailed electronic structure calculations, as well as calculations of the zone center phonons and their coupling with electrons. We find that the exchange splitting is nonuniform and may allow for gap formation at some parts of the Fermi surface. We also find that there is substantial coupling of Zr rattling modes with electrons, which can, in principle, provide the necessary pairing in the s-channel.Comment: 4 pages, embedded color postscript figures. JPEG versions available from the author

    Fate of the Peak Effect in a Type-II Superconductor: Multicriticality in the Bragg-Glass Transition

    Full text link
    We have used small-angle-neutron-scattering (SANS) and ac magnetic susceptibility to investigate the global magnetic field H vs temperature T phase diagram of a single crystal Nb in which a first-order transition of Bragg-glass melting (disordering), a peak effect, and surface superconductivity are all observable. It was found that the disappearance of the peak effect is directly related to a multicritical behavior in the Bragg-glass transition. Four characteristic phase boundary lines have been identified on the H-T plane: a first-order line at high fields, a mean-field-like continuous transition line at low fields, and two continuous transition line associated with the onset of surface and bulk superconductivity. All four lines are found to meet at a multicritical point.Comment: 4 figure
    • …
    corecore