9,452 research outputs found

    Doppler line profiles measurement of the Jovian Lyman Alpha emission with OAO-C

    Get PDF
    Observation of Jupiter made with the high resolution ultraviolet spectrometer of the Orbiting Astronomical Observatory copernicus in April and May, 1980, yield a Jovian Lyman alpha emission intensity of 7 + or 2.5 RR. This indicates a decrease by about a factor of two since the Voyager ultraviolet spectrometer measurements, nearly a year earlier. An unusually high column abundance of hydrogen atoms above the methane homopause at the Voyager epoch is indicated. Since the auroral charged particle bombardment of molecular hydrogen is expected to contribute significantly to the global population of the hydrogen atoms, it is suggested that at the time of the Voyager Jupiter encounter unusually high auroral activity existed, perhaps d to the high concentration of the Io plasma torus. The temporal variation of the Saturn lyman alpha emission, when contrasted with the Jovian data, reveals that the auroral processes are not nearly as important in determining the Saturn Lyman alpha intensity in the nonauroral region

    Kepler-18b,c, and d: A System of Three Planets Confirmed by Transit Timing Variations, Light Curve Validation, Warm-Spitzer Photometry, and Radial Velocity Measurements

    Get PDF
    We report the detection of three transiting planets around a Sun-like star, which we designate Kepler-18. The transit signals were detected in photometric data from the Kepler satellite, and were confirmed to arise from planets using a combination of large transit-timing variations (TTVs), radial velocity variations, Warm-Spitzer observations, and statistical analysis of false-positive probabilities. The Kepler-18 star has a mass of 0.97 M_☉, a radius of 1.1 R_☉, an effective temperature of 5345 K, and an iron abundance of [Fe/H] = +0.19. The planets have orbital periods of approximately 3.5, 7.6, and 14.9 days. The innermost planet "b" is a "super-Earth" with a mass of 6.9 ± 3.4 M_⊕, a radius of 2.00 ± 0.10 R_⊕, and a mean density of 4.9 ± 2.4 g cm^3. The two outer planets "c" and "d" are both low-density Neptune-mass planets. Kepler-18c has a mass of 17.3 ± 1.9 M_⊕, a radius of 5.49 ± 0.26 R_⊕, and a mean density of 0.59 ± 0.07 g cm^3, while Kepler-18d has a mass of 16.4 ± 1.4 M_⊕, a radius of 6.98 ± 0.33 R_⊕ and a mean density of 0.27 ± 0.03 g cm^3. Kepler-18c and Kepler-18d have orbital periods near a 2:1 mean-motion resonance, leading to large and readily detected TTVs

    Possible Observational Criteria for Distinguishing Brown Dwarfs from Planets

    Get PDF
    The difference in formation process between binary stars and planetary systems is reflected in their composition as well as their orbital architecture, particularly orbital eccentricity as a function of orbital period. It is suggested here that this difference can be used as an observational criterion to distinguish between brown dwarfs and planets. Application of the orbital criterion suggests that with three possible exceptions, all of the recently-discovered substellar companions discovered to date may be brown dwarfs and not planets. These criterion may be used as a guide for interpretation of the nature of sub-stellar mass companions to stars in the future.Comment: LaTeX, 11 pages including 2 figures, accepted for publication in the Astrophysical Journal Letter

    Failure mechanisms of graphene under tension

    Full text link
    Recent experiments established pure graphene as the strongest material known to mankind, further invigorating the question of how graphene fails. Using density functional theory, we reveal the mechanisms of mechanical failure of pure graphene under a generic state of tension. One failure mechanism is a novel soft-mode phonon instability of the K1K_1-mode, whereby the graphene sheet undergoes a phase transition and is driven towards isolated benzene rings resulting in a reduction of strength. The other is the usual elastic instability corresponding to a maximum in the stress-strain curve. Our results indicate that finite wave vector soft modes can be the key factor in limiting the strength of monolayer materials

    Stellar Activity and its Implications for Exoplanet Detection on GJ 176

    Full text link
    We present an in-depth analysis of stellar activity and its effects on radial velocity (RV) for the M2 dwarf GJ 176 based on spectra taken over 10 years from the High Resolution Spectrograph on the Hobby-Eberly Telescope. These data are supplemented with spectra from previous observations with the HIRES and HARPS spectrographs, and V- and R-band photometry taken over 6 years at the Dyer and Fairborn observatories. Previous studies of GJ 176 revealed a super-Earth exoplanet in an 8.8-day orbit. However, the velocities of this star are also known to be contaminated by activity, particularly at the 39-day stellar rotation period. We have examined the magnetic activity of GJ 176 using the sodium I D lines, which have been shown to be a sensitive activity tracer in cool stars. In addition to rotational modulation, we see evidence of a long-term trend in our Na I D index, which may be part of a long-period activity cycle. The sodium index is well correlated with our RVs, and we show that this activity trend drives a corresponding slope in RV. Interestingly, the rotation signal remains in phase in photometry, but not in the spectral activity indicators. We interpret this phenomenon as the result of one or more large spot complexes or active regions which dominate the photometric variability, while the spectral indices are driven by the overall magnetic activity across the stellar surface. In light of these results, we discuss the potential for correcting activity signals in the RVs of M dwarfs.Comment: Accepted for publication in Ap

    Injectivity of satellite operators in knot concordance

    Full text link
    Let P be a knot in a solid torus, K a knot in 3-space and P(K) the satellite knot of K with pattern P. This defines an operator on the set of knot types and induces a satellite operator P:C--> C on the set of smooth concordance classes of knots. There has been considerable interest in whether certain such functions are injective. For example, it is a famous open problem whether the Whitehead double operator is weakly injective (an operator is called weakly injective if P(K)=P(0) implies K=0 where 0 is the class of the trivial knot). We prove that, modulo the smooth 4-dimensional Poincare Conjecture, any strong winding number one satellite operator is injective on C. More precisely, if P has strong winding number one and P(K)=P(J), then K is smoothly concordant to J in S^3 x [0,1] equipped with a possibly exotic smooth structure. We also prove that any strong winding number one operator is injective on the topological knot concordance group. If P(0) is unknotted then strong winding number one is the same as (ordinary) winding number one. More generally we show that any satellite operator with non-zero winding number n induces an injective function on the set of Z[1/n]-concordance classes of knots. We extend some of our results to links.Comment: 16 pages; in second version we have added some results on operators on links and string links and added some references to connections with Mazur manifolds and corks; third version has only very minor changes and will appear in Journal of Topolog

    Spitzer observations of the Hyades: Circumstellar debris disks at 625 Myr of age

    Full text link
    We use the Spitzer Space Telescope to search for infrared excess at 24, 70, and 160 micron due to debris disks around a sample of 45 FGK-type members of the Hyades cluster. We supplement our observations with archival 24 and 70 micron Spitzer data of an additional 22 FGK-type and 11 A-type Hyades members in order to provide robust statistics on the incidence of debris disks at 625 Myr of age an era corresponding to the late heavy bombardment in the Solar System. We find that none of the 67 FGK-type stars in our sample show evidence for a debris disk, while 2 out of the 11 A-type stars do so. This difference in debris disk detection rate is likely to be due to a sensitivity bias in favor of early-type stars. The fractional disk luminosity, L_dust/L*, of the disks around the two A-type stars is ~4.0E-5, a level that is below the sensitivity of our observations toward the FGK-type stars. However, our sensitivity limits for FGK-type stars are able to exclude, at the 2-sigma level, frequencies higher than 12% and 5% of disks with L_dust/L* > 1.0E-4 and L_dust/L* > 5.0E-4, respectively. We also use our sensitivity limits and debris disk models to constrain the maximum mass of dust, as a function of distance from the stars, that could remain undetected around our targets.Comment: 33 pages, 11 figures, accepted by Ap

    Independent trapping and manipulation of microparticles using dexterous acoustic tweezers

    Get PDF
    An electronically controlled acoustic tweezer was used to demonstrate two acoustic manipulation phenomena: superposition of Bessel functions to allow independent manipulation of multiple particles and the use of higher-order Bessel functions to trap particles in larger regions than is possible with first-order traps. The acoustic tweezers consist of a circular 64-element ultrasonic array operating at 2.35MHz which generates ultrasonic pressure fields in a millimeter-scale fluid-filled chamber. The manipulation capabilities were demonstrated experimentally with 45 and 90-lm-diameter polystyrene spheres. These capabilities bring the dexterity of acoustic tweezers substantially closer to that of optical tweezers
    corecore