1,194 research outputs found

    Training Induced Positive Exchange Bias in NiFe/IrMn Bilayers

    Full text link
    Positive exchange bias has been observed in the Ni81_{81}Fe19_{19}/Ir20_{20}Mn80_{80} bilayer system via soft x-ray resonant magnetic scattering. After field cooling of the system through the blocking temperature of the antiferromagnet, an initial conventional negative exchange bias is removed after training i. e. successive magnetization reversals, resulting in a positive exchange bias for a temperature range down to 30 K below the blocking temperature (450 K). This new manifestation of magnetic training is discussed in terms of metastable magnetic disorder at the magnetically frustrated interface during magnetization reversal.Comment: 4 pages, 3 figure

    Meson and Baryon dispersion relations with Brillouin fermions

    Get PDF
    We study the dispersion relations of mesons and baryons built from Brillouin quarks on one N_f=2 gauge ensemble provided by QCDSF. For quark masses up to the physical strange quark mass, there is hardly any improvement over the Wilson discretization, if either action is link-smeared and tree-level clover improved. For quark masses in the range of the physical charm quark mass, the Brillouin action still shows a perfect relativistic behavior, while the Wilson action induces severe cut-off effects. As an application we determine the masses of the \Omega_c^0, \Omega_{cc}^+ and \Omega_{ccc}^{++} baryons on that ensemble.Comment: 16 pages, 9 figures, 4 tables; v2: one Reference added, matches published versio

    Melt viscosities of lattice polymers using a Kramers potential treatment

    Full text link
    Kramers relaxation times Ï„K\tau_{K} and relaxation times Ï„R\tau_{R} and Ï„G\tau_{G} for the end-to-end distances and for center of mass diffusion are calculated for dense systems of athermal lattice chains. Ï„K\tau_{K} is defined from the response of the radius of gyration to a Kramers potential which approximately describes the effect of a stationary shear flow. It is shown that within an intermediate range of chain lengths N the relaxation times Ï„R\tau_{R} and Ï„K\tau_{K} exhibit the same scaling with N, suggesting that N-dependent melt-viscosities for non-entangled chains can be obtained from the Kramers equilibrium concept.Comment: submitted to: Journal of Chemical Physic

    On the zig-zag pilot-wave approach for fermions

    Full text link
    We consider a pilot-wave approach for the Dirac theory that was recently proposed by Colin and Wiseman. In this approach, the particles perform a zig-zag motion, due to stochastic jumps of their velocity. We respectively discuss the one-particle theory, the many-particle theory and possible extensions to quantum field theory. We also discuss the non-relativistic limit of the one-particle theory. For a single particle, the motion is always luminal, a feature that persists in the non-relativistic limit. For more than one particle the motion is in general subluminal.Comment: 23 pages, no figures, LaTe

    Dual Behavior of Antiferromagnetic Uncompensated Spins in NiFe/IrMn Exchange Biased Bilayers

    Full text link
    We present a comprehensive study of the exchange bias effect in a model system. Through numerical analysis of the exchange bias and coercive fields as a function of the antiferromagnetic layer thickness we deduce the absolute value of the averaged anisotropy constant of the antiferromagnet. We show that the anisotropy of IrMn exhibits a finite size effect as a function of thickness. The interfacial spin disorder involved in the data analysis is further supported by the observation of the dual behavior of the interfacial uncompensated spins. Utilizing soft x-ray resonant magnetic reflectometry we have observed that the antiferromagnetic uncompensated spins are dominantly frozen with nearly no rotating spins due to the chemical intermixing, which correlates to the inferred mechanism for the exchange bias.Comment: 4 pages, 3 figure

    On Epstein's trajectory model of non-relativistic quantum mechanics

    Full text link
    In 1952 Bohm presented a theory about non-relativistic point-particles moving along deterministic trajectories and showed how it reproduces the predictions of standard quantum theory. This theory was actually presented before by de Broglie in 1926, but Bohm's particular formulation of the theory inspired Epstein to come up with a different trajectory model. The aim of this paper is to examine the empirical predictions of this model. It is found that the trajectories in this model are in general very different from those in the de Broglie-Bohm theory. In certain cases they even seem bizarre and rather unphysical. Nevertheless, it is argued that the model seems to reproduce the predictions of standard quantum theory (just as the de Broglie-Bohm theory).Comment: 12 pages, no figures, LaTex; v2 minor improvement

    Thermal limitation of far-field matter-wave interference

    Full text link
    We assess the effect of the heat radiation emitted by mesoscopic particles on their ability to show interference in a double slit arrangement. The analysis is based on a stationary, phase-space based description of matter wave interference in the presence of momentum-exchange mediated decoherence.Comment: 8 pages, 2 figures; published versio

    Predictions with Lattice QCD

    Get PDF
    In recent years, we used lattice QCD to calculate some quantities that were unknown or poorly known. They are the q2q^2 dependence of the form factor in semileptonic D→KlνD\to Kl\nu decay, the leptonic decay constants of the D+D^+ and DsD_s mesons, and the mass of the BcB_c meson. In this paper, we summarize these calculations, with emphasis on their (subsequent) confirmation by measurements in e+e−e^+e^-, γp\gamma p and pˉp\bar{p}p collisions.Comment: 5 pages; update of hep-lat/0509169, with experimental confirmation of form factors from Belle and fDs from BaBar; presented at SciDAC 2006 for the Fermilab Lattice, MILC, and HPQCD Collaboration

    Renormalization-group analysis of the validity of staggered-fermion QCD with the fourth-root recipe

    Get PDF
    I develop a renormalization-group blocking framework for lattice QCD with staggered fermions. Under plausible, and testable, assumptions, I then argue that the fourth-root recipe used in numerical simulations is valid in the continuum limit. The taste-symmetry violating terms, which give rise to non-local effects in the fourth-root theory when the lattice spacing is non-zero, vanish in the continuum limit. A key role is played by reweighted theories that are local and renormalizable on the one hand, and that approximate the fourth-root theory better and better as the continuum limit is approached on the other hand.Comment: Minor corrections. Revtex, 58 page
    • …
    corecore