2,055 research outputs found

    Magnetically modulated accretion in T Tauri stars

    Get PDF
    We examine how accretion on to T Tauri stars may be modulated by a time-dependent `magnetic gate' where the inner edge of the accretion disc is disrupted by a varying stellar field. We show that magnetic field variations on time-scales shorter than 10^5 yr can modulate the accretion flow, thus providing a possible mechanism both for the marked photometric variability of T Tauri stars and for the possible conversion of T Tauri stars between classical and weak line status. We thus suggest that archival data relating to the spectrophotometric variability of T Tauri stars may provide an indirect record of magnetic activity cycles in low-mass pre-main-sequence stars.Comment: LaTeX file (requires mn.sty), 4 pages, no figures or tables. To appear in MNRAS

    Warping and Precession of Accretion Disks Around Magnetic Stars: Nonlinear Evolution

    Full text link
    The inner region of the accretion disk around a magnetized star (T Tauri star, white dwarf or neutron star) is subjected to magnetic torques that induce warping and precession of the disk. These torques arise from the interaction between the stellar field and the induced electric currents in the disk. We carry out numerical simulations of the nonlinear evolution of warped, viscous accretion disks driven by the magnetic torques. We show that the disk can develop into a highly warped steady state in which the disk attains a fixed (warped) shape and precesses rigidly. The warp is most pronounced at the disk inner radius (near the magnetosphere boundary). As the system parameters (such as accretion rate) change, the disk can switch between a completely flat state (warping stable) and a highly warped state. The precession of warped disks may be responsible for a variety of quasi-periodic oscillations or radiation flux variabilities observed in many different systems, including young stellar objects and X-ray binaries.Comment: 16 pages, 7 figures; extended parameter searches, changes in discussion; accepted for publication in Ap

    Associations between daily sitting time and the combinations of lifestyle risk factors in men

    Get PDF
    Background: Understanding the reciprocal role that multiple problematic behaviours play in men's health is important for intervention delivery and for reducing the healthcare burden. Data regarding the concurrence of problematic health behaviours is currently limited but offers insights into risk profiles, and should now include total time spent sitting/day. Methods: Self-reported data on lifestyle health behaviours was collected from 232 men aged ≥18 years who engaged in a men's health promotion programme delivered by 16 English Premier League Clubs. Results: Men at risk due to high sitting display multiple concurrent lifestyle risk factors, 88.6% displayed at least two ancillary risk factors and were three times more likely to report ≥2 lifestyle risk factors (OR. =3.13, 95% confidence interval (CI). =1.52-6.42) than those with low sitting risk. Significant differences in the mean number of risk factors reported between those participants in the higher risk (2.43. ±. 0.90) and lower risk (2.13. ±. 0.96) sitting categories were also found (P=0.015). Conclusions: Hard-to-reach men displayed multiple problematic concurrent behaviours, strongly linked to total sitting time. © 2012 WPMH GmbH

    P-glycoprotein and metallothionein expression and resistance to chemotherapy in osteosarcoma.

    Get PDF
    The expression of the drug resistance (DR) mediators P-glycoprotein (P-gp) and the metallothioneins (MT) was assessed immunohistochemically in biopsy material from patients with high-grade malignant osteosarcoma (OS). No significant difference was found in survival rate between expressors of both P-gp and MT and non-expressors. Thus, it was concluded that lack of expression of these two drug resistance-related proteins does not appear to confer any advantage in terms of patient survival in osteosarcoma

    On the Nature of Part Time Radio Pulsars

    Full text link
    The recent discovery of rotating radio transients and the quasi-periodicity of pulsar activity in the radio pulsar PSR B1931++24 has challenged the conventional theory of radio pulsar emission. Here we suggest that these phenomena could be due to the interaction between the neutron star magnetosphere and the surrounding debris disk. The pattern of pulsar emission depends on whether the disk can penetrate the light cylinder and efficiently quench the processes of particle production and acceleration inside the magnetospheric gap. A precessing disk may naturally account for the switch-on/off behavior in PSR B1931++24.Comment: 9 pages, accepted to ApJ

    A Two-Fluid Thermally-Stable Cooling Flow Model

    Full text link
    A new model for cooling flows in X-ray clusters, capable of naturally explaining salient features observed, is proposed. The only requirement is that a significant relativistic component, in the form of cosmic rays (CR), be present in the intra-cluster medium and significantly frozen to the thermal gas. Such an addition qualitatively alters the conventional isobaric thermal instability criterion such that a fluid parcel becomes thermally stable when its thermal pressure drops below a threshold fraction of its CR pressure. Consequently, the lowest possible temperature at any radius is about one third of the ambient temperature {\it at that radius}, exactly as observed, In addition, we suggest that dissipation of internal gravity waves, excited by radial oscillatory motions of inward drifting cooling clouds about their radial equilibrium positions, may be responsible for heating up cooling gas. With the ultimate energy source for powering the cooling X-ray luminosity and heating up cooling gas being gravitational due to inward drifting cooling clouds as well as the general inward flow, heating is spatially distributed and energetically matched with cooling. One desirable property of this heating mechanism is that heating energy is strongly centrally concentrated, providing the required heating for emission-line nebulae.Comment: 13 pages, submitted to ApJ

    Radio Continuum Evidence for Outflow and Absorption in the Seyfert 1 Galaxy Markarian 231

    Get PDF
    The VLBA and the VLA have been used to image the continuum radio emission from Mrk 231, a Seyfert 1 galaxy and the brightest infrared galaxy in the local universe. The smallest scales reveal a double source less than 2 pc in extent. The components of this central source have minimum brightness temperatures of 10^9 to 10^{10} K, spectral turnovers between 2 and 10 GHz, and appear to define the galaxy nucleus plus the inner regions of a jet. The components may be free-free absorbed or synchtrotron self-absorbed. On larger scales, the images confirm a previously known north-south triple source extending 40 pc and elongated perpendicular to a 350-pc starburst disk. Both lobes show evidence for free-free absorption near 2 GHz, probably due to ionized gas with a density of 1-2 X 10^3 cm^{-3} in the innermost parts of the starburst disk. The absorbing gas may be ionized by the active nucleus or by local regions of enhanced star formation. The elongation of the 40-pc triple differs by 65 deg from that of the 2-pc source. The different symmetry axes on different scales imply strong curvature in the inner part of the radio jet. The radio continuum from the 350-pc disk has a spectral index near -0.4 above 1.4 GHz and is plausibly energized by a massive burst of star formation. On VLA scales, asymmetric and diffuse emission extends for more than 25 kpc. This emission has a steep spectrum, linear polarization exceeding 50% at some locations, and shares the symmetry axis of the 40-pc triple. The diffuse radio source is probably generated by energy deposition from a slow-moving nuclear jet, which conceivably could help energize the off-nuclear starburst as well.Comment: 34 pages, 7 Postscript figures, LaTeX file in AASTeX format, accepted in ApJ, Vol. 516, May 1, 199

    3D-MHD simulations of an accretion disk with star-disk boundary layer

    Get PDF
    We present global 3D MHD simulations of geometrically thin but unstratified accretion disks in which a near Keplerian disk rotates between two bounding regions with initial rotation profiles that are stable to the MRI. The inner region models the boundary layer between the disk and an assumed more slowly rotating central, non magnetic star. We investigate the dynamical evolution of this system in response to initial vertical and toroidal fields imposed in a variety of domains contained within the near Keplerian disk. Cases with both non zero and zero net magnetic flux are considered and sustained dynamo activity found in runs for up to fifty orbital periods at the outer boundary of the near Keplerian disk. Simulations starting from fields with small radial scale and with zero net flux lead to the lowest levels of turbulence and smoothest variation of disk mean state variables. For our computational set up, average values of the Shakura & Sunyaev (1973) α\alpha parameter in the Keplerian disk are typically 0.004±0.002.0.004\pm 0.002. Magnetic field eventually always diffuses into the boundary layer resulting in the build up of toroidal field inward angular momentum transport and the accretion of disk material. The mean radial velocity, while exhibiting large temporal fluctuations is always subsonic. Simulations starting with net toroidal flux may yield an average α0.04.\alpha \sim 0.04. While being characterized by one order of magnitude larger average α\alpha, simulations starting from vertical fields with large radial scale and net flux may lead to the formation of persistent non-homogeneous, non-axisymmetric magnetically dominated regions of very low density.Comment: Accepted for publication in Ap

    Warping of Accretion Disks with Magnetically Driven Outflows: A Possible Origin for Jet Precession

    Full text link
    Current theoretical models for the outflows/jets from AGN, X-ray binaries and young stellar objects involve large-scale magnetic fields threading an underlying accretion disk. We suggest that such a disk is subjected to warping instability and retrograde precession driven by magnetic torques associated with the outflow. The growth timescale for the disk warp and the precession period are of order the radial infall time of the disk. These effects may be relevant to jet precession and other variabilities observed in many systems.Comment: 4 pages with 2 figures. ApJL in pres

    Magnetically Driven Warping, Precession and Resonances in Accretion Disks

    Get PDF
    The inner region of the accretion disk onto a rotating magnetized central star (neutron star, white dwarf or T Tauri star) is subjected to magnetic torques which induce warping and precession of the disk. The origin of these torques lies in the interaction between the (induced) surface current on the disk and the horizontal magnetic field (parallel to the disk) produced by the inclined magnetic dipole. Under quite general conditions, there exists a magnetic warping instability in which the magnetic torque drives the disk plane away from the equatorial plane of the star toward a state where the disk normal vector is perpendicular to the spin axis. Viscous stress tends to suppress the warping instability at large radii, but the magnetic torque always dominates as the disk approaches the magnetosphere boundary. The magnetic torque also drives the tilted inner disk into retrograde precession around the stellar spin axis. Moreover, resonant magnetic forcing on the disk can occur which may affect the dynamics of the disk. The magnetically driven warping instability and precession may be related to a number observational puzzles, including: (1) Spin evolution (torque reversal) of accreting X-ray pulsars; (2) Quasi-periodic oscillations in low-mass X-ray binaries; (3) Super-orbital periods in X-ray binaries; (4) Photometric period variations of T Tauri stars.Comment: 39 pages including 1 ps figure; Published version; ApJ, 524, 1030-1047 (1999
    corecore