30,484 research outputs found
An easy-to-use diagnostic system development shell
The Diagnostic System Development Shell (DSDS), an expert system development shell for diagnostic systems, is described. The major objective of building the DSDS is to create a very easy to use and friendly environment for knowledge engineers and end-users. The DSDS is written in OPS5 and CommonLisp. It runs on a VAX/VMS system. A set of domain independent, generalized rules is built in the DSDS, so the users need not be concerned about building the rules. The facts are explicitly represented in a unified format. A powerful check facility which helps the user to check the errors in the created knowledge bases is provided. A judgement facility and other useful facilities are also available. A diagnostic system based on the DSDS system is question driven and can call or be called by other knowledge based systems written in OPS5 and CommonLisp. A prototype diagnostic system for diagnosing a Philips constant potential X-ray system has been built using the DSDS
Critical Behaviour of One-particle Spectral Weights in the Transverse Ising Model
We investigate the critical behaviour of the spectral weight of a single
quasiparticle, one of the key observables in experiment, for the particular
case of the transverse Ising model.Series expansions are calculated for the
linear chain and the square and simple cubic lattices. For the chain model, a
conjectured exact result is discovered. For the square and simple cubic
lattices, series analyses are used to estimate the critical exponents. The
results agree with the general predictions of Sachdev.Comment: 4 pages, 3 figure
MOS field-effect-transistor technology
Metal oxide semiconductor field effect transistor circuit development and laminated electronic packaging for computer storage device
Quantum phase space picture of Bose-Einstein Condensates in a double well: Proposals for creating macroscopic quantum superposition states and a study of quantum chaos
We present a quantum phase space model of Bose-Einstein condensate (BEC) in a
double well potential. In a two-mode Fock-state analysis we examine the
eigenvectors and eigenvalues and find that the energy correlation diagram
indicates a transition from a delocalized to a fragmented regime. Phase space
information is extracted from the stationary quantum states using the Husimi
distribution function. It is shown that the quantum states are localized on the
known classical phase space orbits of a nonrigid physical pendulum, and thus
the novel phase space characteristics of a nonrigid physical pendulum such as
the motions are seen to be a property of the exact quantum states. Low
lying states are harmonic oscillator like libration states while the higher
lying states are Schr\"odinger cat-like superpositions of two pendulum rotor
states. To study the dynamics in phase space, a comparison is made between a
displaced quantum wavepacket and the trajectories of a swarm of points in
classical phase space. For a driven double well, it is shown that the classical
chaotic dynamics is manifest in the dynamics of the quantum states pictured
using the Husimi distribution. Phase space analogy also suggests that a
phase displaced wavepacket put on the unstable fixed point on a separatrix will
bifurcate to create a superposition of two pendulum rotor states - a
Schr\"odinger cat state (number entangled state) for BEC. It is shown that the
choice of initial barrier height and ramping, following a phase
imprinting on the condensate, can be used to generate controlled entangled
number states with tunable extremity and sharpness.Comment: revised version, 13 pages, 13 figure
Markov and Neural Network Models for Prediction of Structural Deterioration of Stormwater Pipe Assets
Storm-water pipe networks in Australia are designed to convey water from rainfall and surface runoff. They do not transport sewerage. Their structural deterioration is progressive with aging and will eventually cause pipe collapse with consequences of service interruption. Predicting structural condition of pipes provides vital information for asset management to prevent unexpected failures and to extend service life. This study focused on predicting the structural condition of storm-water pipes with two objectives. The first objective is the prediction of structural condition changes of the whole network of storm-water pipes by a Markov model at different times during their service life. This information can be used for planning annual budget and estimating the useful life of pipe assets. The second objective is the prediction of structural condition of any particular pipe by a neural network model. This knowledge is valuable in identifying pipes that are in poor condition for repair actions. A case study with closed circuit television inspection snapshot data was used to demonstrate the applicability of these two models
Strict limit on in-plane ordered magnetic dipole moment in URu2Si2
Neutron diffraction is used to examine the polarization of weak static
antiferromagnetism in high quality single crystalline URu2Si2. As previously
documented, elastic Bragg-like diffraction develops for temperature T<T_{HO}=
17.5 K at q=(100) but not at wave vector transfer q=(001). The peak width
indicates correlation lengths \xi_c=230(12) \AA \ and \xi_a=240(15) \AA. The
integrated intensity of the T-dependent peaks corresponds to a sample averaged
c-oriented staggered moment of \mu_{c}=0.022(1) \mu_B at T=1.7 K. The absence
of T-dependent diffraction at q=(001) places a limit \mu_{\perp}<0.0011 \mu_B
on an f- or d-orbital based in-plane staggered magnetic dipole moment, which is
associated with multipolar orders proposed for URu_2Si_2.Comment: 9 pages, 7 figure
Low Frequency Tilt Seismology with a Precision Ground Rotation Sensor
We describe measurements of the rotational component of teleseismic surface
waves using an inertial high-precision ground-rotation-sensor installed at the
LIGO Hanford Observatory (LHO). The sensor has a noise floor of 0.4 nrad at 50 mHz and a translational coupling of less than 1 rad/m
enabling translation-free measurement of small rotations. We present
observations of the rotational motion from Rayleigh waves of six teleseismic
events from varied locations and with magnitudes ranging from M6.7 to M7.9.
These events were used to estimate phase dispersion curves which shows
agreement with a similar analysis done with an array of three STS-2
seismometers also located at LHO
- …