2,172 research outputs found

    Sessile droplet evaporation on superheated superhydrophobic surfaces

    Full text link
    This fluid dynamics video depicts the evaporation of sessile water droplets placed on heated superhydrophobic (SH) surfaces of varying cavity fraction, F_c, and surface temperature, T_s, above the saturation temperature, T_sat. Images were captured at 10,000 FPS and are played back at 30 FPS in this video. Teflon-coated silicon surfaces of F_c = 0, 0.5, 0.8, and 0.95 were used for these experiments. T_s ranging from 110{\deg}C to 210{\deg}C were studied. The video clips show how the boiling behavior of sessile droplets is altered with changes in surface microstructure. Quantitative results from heat transfer rate experiments conducted by the authors are briefly discussed near the end of the video.Comment: videos include

    Stochastic Event Reconstruction of Atmospheric Contaminant Dispersion Using Bayesian Inference

    Get PDF
    Environmental sensors have been deployed in various cities for early detection of contaminant releases into the atmosphere. Event reconstruction and improved dispersion modeling capabilities are needed to estimate the extent of contamination, which is required to implement effective strategies in emergency management. To this end, a stochastic event reconstruction capability that can process information from an environmental sensor network is developed. A probability model is proposed to take into account both zero and non-zero concentration measurements that can be available from a sensor network because of a sensor’s specified limit of detection. The inference is based on the Bayesian paradigm with Markov chain Monte Carlo (MCMC) sampling. Fast-running Gaussian plume dispersion models are adopted as the forward model in the Bayesian inference approach to achieve rapid-response event reconstructions. The Gaussian plume model is substantially enhanced by introducing stochastic parameters in its turbulent diffusion parameterizations and estimating them within the Bayesian inference framework. Additionally, parameters of the likelihood function are estimated in a principled way using data and prior probabilities to avoid tuning in the overall method, The event reconstruction method is successfully validated for both real and synthetic dispersion problems, and posterior distributions of the model parameters are used to generate probabilistic plume envelopes with specified confidence levels to aid emergency decisions

    Experimental Demonstration of Time-Delay Interferometry for the Laser Interferometer Space Antenna

    Full text link
    We report on the first demonstration of time-delay interferometry (TDI) for LISA, the Laser Interferometer Space Antenna. TDI was implemented in a laboratory experiment designed to mimic the noise couplings that will occur in LISA. TDI suppressed laser frequency noise by approximately 10^9 and clock phase noise by 6x10^4, recovering the intrinsic displacement noise floor of our laboratory test bed. This removal of laser frequency noise and clock phase noise in post-processing marks the first experimental validation of the LISA measurement scheme.Comment: 4 pages, 4 figures, to appear in Physical Review Letters end of May 201

    Formation of submarine lava channel textures : insights from laboratory simulations

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): B03104, doi:10.1029/2005JB003796.Laboratory simulations using polyethylene glycol (PEG) extruded at a constant rate and temperature into a tank with a uniform basal slope and filled with a cold sucrose solution generate channels that are defined by stationary levees and mobile flow interiors. These laboratory channels consistently display the following surface textures in the channel: smooth, folded, lineated, and chaotic. In the simulations, we can observe specific local conditions including flow rate, position within the channel, and time that combine to develop each texture. The textures in PEG flows form due to relative differences in shear forces between the PEG crust and the underlying liquid wax. Minimal shear forces form smooth crust, whereas folded crust forms when the shear is sufficiently high to cause ductile deformation. Brittle deformation of solid PEG creates a chaotic texture, and lineated crust results from shear forces along the channel-levee margin. We observe similar textures in submarine lava channels with sources at or near the Axial Summit Trough of the East Pacific Rise between 9° and 10°N. We mapped the surface textures of nine submarine lava channels using high-resolution digital images collected during camera tows. These textural maps, along with observations of the formation of similar features in analog flows, reveal important information about the mechanisms occurring across the channel during emplacement, including relative flow velocity and shear stress.The cruise was funded by a grant to WHOI from the National Science Foundation (NSF) OCE-9819261, with additional funding provided by WHOI thorough the Vetlesen Foundation. The PEG experiments were funded by NSF OCE-0425073 in a grant to Tracy Gregg

    Methodology and Results of the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Targets Study (NHATS)

    Get PDF
    Near-Earth Asteroids (NEAs) have been identified by the Administration as potential destinations for human explorers during the mid-2020s. Planning such ambitious missions requires selecting potentially accessible targets from the growing known population of 8,008 NEAs. NASA is therefore conducting the Near-Earth Object (NEO) Human Space Flight (HSF) Accessible Targets Study (NHATS), in which the trajectory opportunities to all known NEAs are being systematically evaluated with respect to a set of defined constraints. While the NHATS algorithms have identified hundreds of NEAs which satisfy purposely inclusive trajectory constraints, only a handful of them offer truly attractive mission opportunities in the time frame of greatest interest. In this paper we will describe the structure of the NHATS algorithms and the constraints utilized in the study, present current study results, and discuss various mission design considerations for future human space flight missions to NEAs

    AtomSim: web-deployed atomistic dynamics simulator

    Get PDF
    AtomSim, a collection of interfaces for computational crystallography simulations, has been developed. It uses forcefield-based dynamics through physics engines such as the General Utility Lattice Program, and can be integrated into larger computational frameworks such as the Virtual Neutron Facility for processing its dynamics into scattering functions, dynamical functions etc. It is also available as a Google App Engine-hosted web-deployed interface. Examples of a quartz molecular dynamics run and a hafnium dioxide phonon calculation are presented
    • …
    corecore