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Abstract

Environmental sensors have been deployed in various cities for early detection of
contaminant releases into the atmosphere. Event reconstruction and improved dis-
persion modeling capabilities are needed to estimate the extent of contamination,
which is required to implement effective strategies in emergency management. To
this end, a stochastic event reconstruction capability that can process information
from an environmental sensor network is developed. A probability model is proposed
to take into account both zero and non-zero concentration measurements that can
be available from a sensor network because of a sensor’s specified limit of detection.
The inference is based on the Bayesian paradigm with Markov chain Monte Carlo
(MCMC) sampling. Fast-running Gaussian plume dispersion models are adopted
as the forward model in the Bayesian inference approach to achieve rapid-response
event reconstructions. The Gaussian plume model is substantially enhanced by in-
troducing stochastic parameters in its turbulent diffusion parameterizations and
estimating them within the Bayesian inference framework. Additionally, parame-
ters of the likelihood function are estimated in a principled way using data and
prior probabilities to avoid tuning in the overall method, The event reconstruction
method is successfully validated for both real and synthetic dispersion problems, and
posterior distributions of the model parameters are used to generate probabilistic
plume envelopes with specified confidence levels to aid emergency decisions.

Key words: Bayesian Statistics, Event Reconstruction, Source Characterization,
Gaussian Plume Models, Markov chain Monte Carlo (MCMC)
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1 Introduction

Event reconstruction of chemical or biological (CB) agent dispersion into the
atmosphere is an important inverse problem in homeland security and envi-
ronmental monitoring applications. In event reconstruction, (also referred to
as source characterization or source inversion in various studies) the major
goal is to characterize the source of an atmospheric contaminant dispersion
event in terms of release location and emission rate by using time-averaged
concentrations and wind measurements that can be available from a sensor
network. Event reconstruction tools can provide critical information for first-
response and remediation efforts. Once the dispersion event is characterized
in terms of modeling parameters, forward projections of the dispersion event
can also be performed to quantify the extent of exposure to contamination.

Event reconstruction of atmospheric contaminant dispersion has received grow-
ing interest in recent years. Different methods have been adopted to address
the problem. For instance, Thomson et al. (2007) applied an inverse problem
approach to locating a known gas source from measurements of gas concentra-
tion and wind data. A search algorithm with a simulated annealing method
was employed to find the source location and emission rate. Simulated an-
nealing was found to be advantageous as it helps prevent the search algorithm
from converging to local minima that might surround the targeted global min-
imum. In their study, three cost functions with different regularization terms
were evaluated, and the cost function that minimizes the total source emissions
was found to be the most robust, producing successful event reconstructions.

Allen et al. (2007a) developed a source characterization method in which a
forward dispersion model was coupled with a backward receptor model using
a genetic optimization algorithm. A puff model was used in the source char-
acterization. The method was validated with both synthetic and experimental
field data. Allen et al. (2007b) extended this method by considering the wind
direction as an unknown parameter in addition to the source location and
emission rate. A Gaussian plume model was considered instead of the puff
model. The capability was only tested against synthetic concentration data
with white noise. The results show that the method is capable of computing
the correct solution, as long as the magnitude of white noise does not exceed
the original concentration data.

Several recent event reconstruction studies have favored the Bayesian infer-
ence approach over the optimization approach as it offers several advantages
(Johannesson et al., 2004; Chow et al., 2006; Keats et al., 2007). The main
distinguishing feature of the Bayesian inference method is that it estimates
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probability distributions for parameters of interest and quantifies the uncer-
tainty in the estimated parameter, whereas an optimization method provides
point estimates for the parameters of interest through maximizing or mini-
mizing an objective function.

Johannesson et al. (2004) presented dynamic Bayesian models using Monte
Carlo methods for target tracking and atmospheric dispersion event recon-
struction problems. Both the well established Markov chain Monte Carlo
(MCMC) approach and the sequential Monte Carlo approach for dynamic
problems are discussed in detail in their study. Chow et al. (2006) and Neu-
mann et al. (2006) extended the Bayesian event reconstruction approach of
Johannesson et al. (2004) to neighborhood scale atmospheric dispersion events.
Both computationally intensive computational fluid dynamics (CFD) models,
and computationally less intensive empirically based Gaussian puff models
were adopted in these studies, respectively. The results of Chow et al. (2006)
and Neumann et al. (2006) have shown that the Bayesian methodology is effi-
cient in delivering probabilistic answers to the event reconstruction problem.

With high-fidelity models, the longer simulation times needed for event re-
constructions can limit their applications in emergency response operations.
Marzouk et al. (2007) reformulated the Bayesian approach to inverse prob-
lems by using polynomial chaos expansions to represent random variables. In
their study a transient diffusion problem was considered. The results have
shown that significant gains in computational time can be obtained by adopt-
ing the new scheme over direct sampling. Keats et al. (2007) considered a
source-receptor relationship within the Bayesian inference method to reduce
the overall computation time for source determination. An adjoint equation
for the contaminant concentration was solved for that purpose. The method
was tested for event reconstruction of dispersion within an array of obstacles,
and for the Oklahoma city Joint Urban 2003 atmospheric dispersion study.
The results show that the method can be considered successful in reconstruct-
ing the source location and the emission rate. The results also indicate that
improving the forward model physics and incorporating the model uncertainty
can be helpful in reducing the discrepancy between the model predictions and
the experiment.

Indoor environments are also susceptible to dispersion events. Sreedharan et al.
(2006) developed a systems approach for rapid detection of toxic agents in the
indoor environment. A Bayesian interpretation approach is adopted to evalu-
ate the effects of response time, threshold level, accuracy and overall perfor-
mance of sensor systems. The method employs a two-stage Bayes Monte Carlo
algorithm. In the first stage, a library of indoor dispersion simulations are cre-
ated that cover probable release scenarios with varying airflow conditions. The
creation of the simulation library can be computationally expensive, and it has
to be prepared before a dispersion event. In the second stage, the observations
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are assessed for their statistical agreement with simulations from the library,
and the most likely situations are identified based on their probabilities.

Thus far, existing event reconstruction studies have mainly focused on charac-
terizing the dispersion source in terms of its location and strength. In the case
of a dispersion event, both zero and non-zero concentration readings can be
available from a sensor network, and there is a need to incorporate all the sen-
sor readings in a collective fashion. Furthermore, predictions can suffer from
technical problems due to empirically defined constants that may appear in
both the probability and the dispersion models. To the best of our knowledge,
a detailed account of these issues has not been established within the context
of event reconstruction problems. Hence, the primary objective of the present
study is to address these specific issues in a principled way by exploiting the
Bayesian inference framework.

In what follows, a stochastic event reconstruction method is presented, ex-
tending the Bayesian inference methodology described in Johannesson et al.
(2004) and Chow et al. (2006). In particular, a probability model is introduced
to take into account both zero and non-zero concentration measurements that
can be available from a sensor network because of a sensor’s specified limit
of detection. Additionally, observed data and prior probability concepts are
exploited to avoid arbitrary tuning of parameters in the probability model
on a case by case basis. Fast-running Gaussian plume dispersion models have
been employed in event reconstruction methods to satisfy the rapid emergency
response requirements (Thomson et al., 2007; Allen et al., 2007b). Within the
range of their applicability, a Gaussian plume model is also adopted in the
present study, but its performance is uniquely enhanced by reformulating its
empirical turbulent diffusion parameterizations with stochastic parameters.
Finally, the event reconstruction method is successfully validated using both
real and synthetic test cases, under spatially constant and variable wind con-
ditions.

2 Bayesian Formulation

The forward modeling problem can be defined as predicting the response of
a system using a physical theory (forward model) and system parameters. In
the inverse modeling problem, an inference is made on the values of system
parameters based on observations of the system response (Tarantola, 2005).
Loosely speaking, inverse problems can be formulated as follows:

m ≈ F−1(d), (1)
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where d is a vector of observations, m is a vector of forward model parameters,
and the operator F is the forward model that governs the system response.
Inverse problems can be ill-conditioned, because small changes in d can lead
to large changes in m. The present event reconstruction problem requires
estimating the model parameters m (e.g. release location, emission rate, wind
direction etc.) given the observed concentrations d from a sensor network.
Depending on the applications of inverse problems, both deterministic and
probabilistic approaches have been developed for solving them (Vemuri, 2002).
The probabilistic approach is pursued in the present study, and it is explained
in the following.

Bayes’ theorem defines the posterior probability density of a set of model
parameters m given the observations d as follows (Gilks et al., 1996; Carlin
and Louis, 1996).

p(m|d) =
L(d|m)p(m)

p(d)
, (2)

where p(m|d) is the posterior probability density, L(d|m) is the likelihood func-

tion, p(m) is the prior probability density, and p(d) is the marginal probability

density. The posterior probability density given in Eq. (2) defines the condi-
tional probability density of forward model parameters m, given the observed
data d. Calculation of p(m|d) is central in Bayesian inference, and it can be
seen as a solution to an inverse problem.

Direct computation of the posterior density, using Bayes’ theorem, necessitates
the computation of the marginal probability density given in Eq. (2). This
can be computationally intensive to the point of being impractical for most
applications. A practical approach for estimating properties of the posterior
distribution is to perform MCMC sampling by noting the following (Metropolis
et al., 1953; Carlin and Louis, 1996; Gilks et al., 1996)

p(m|d) ∝ L(d|m)p(m). (3)

Within this framework, the observed data d enters the Bayesian formulation
only through the likelihood function.

In the present event reconstruction problem, specification of the likelihood
function deserves attention, because it models how the concentration obser-
vations are acquired. For instance, sensors cannot reliably quantify the con-
centration of trace amounts of contaminants that may be at levels below the
sensor’s specified limit of detection. In that situation, a sensor may read a zero
concentration value, ignoring the possible existence of trace amounts of con-
taminants. Treatment of zero sensor readings within the Bayesian framework
is an issue. For instance, zero sensor readings can be discarded or represented
as a negligibly small number. However, both approaches may lead to biased
distributions. Alternatively, a probability model can be assumed for the exis-
tence of trace amounts of contaminants that may not be detected due to the
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sensor’s specified limit of detection. In other words, a likelihood function can
be constructed in such a way that it accounts for zero sensor readings, when
in fact the actual concentration can be non-zero.

Let m be the model parameters, Cm the predicted concentration, ξi the con-
centration measured by an ideal sensor i, and di the concentration observed
by an actual sensor i. It is assumed that the observations di are related to ξi

as follows:

di =











0, with probability exp(−α · Cm)

ξi, with probability 1 − exp(−α · Cm)
(4)

and ξi, given the model, has a lognormal distribution with density

p(ξi|m) =
1√

2πσξi

· exp
(

− 1

2σ2
(log ξi − log Cm)2

)

, (5)

where σ2 is the variance of the distribution. In Eq. (4), it is assumed that
the probability of not detecting a plume can be calculated based on the pre-
dicted concentration Cm, and at the threshold concentration Cth the plume is
detected with probability 1/2, from which α can be computed as

1 − exp(−α · Cth) =
1

2
=⇒ α =

1

Cth

log(2). (6)

Then, the likelihood function for a single datum di can be formulated as fol-
lows:

L(di|m) =
∫

∞

0
p(di, ξi|m)dξi

= II [di = 0]
∫

∞

0
exp(−αCm)p(ξi|m)dξi+

+ II [di > 0]
∫

∞

0
[1 − exp(−αCm)] p(ξi|m)δdi

(ξi)dξi,

(7)

where δdi
is the Dirac delta-function. Therefore, the likelihood function can

be written as:

L(di|m) = II [di = 0] · exp(−αCm)+

+ II [di > 0]
(1 − exp(−αCm))√

2πσdi

· exp
(

− 1

2σ2
(log di − log Cm)2

) (8)

It should be noted that the above likelihood function depends on the assumed
probability of observing the data. Different likelihood functions can also be
developed under different assumptions.

A forward model is needed to calculate the model concentration Cm. In emer-
gency response situations, the overall run-time for delivering answers is an
important factor. Hence, fast running Gaussian plume dispersion models are
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adopted as the forward model. A Gaussian plume dispersion model for uni-
form steady wind conditions can be written as follows (Panofsky and Dutton,
1984):

Cm(x, y, z) =
Q

2πUσyσz

· exp (− y2

2σ2
y

)·

·
{

exp (−(z − H)2

2σ2
z

) + exp (−(z + H)2

2σ2
z

)
}

,

(9)

where Cm(x, y, z) is the concentration at a particular location, Q is the emis-
sion rate or the source strength, U is the mean wind speed and H is the height
of the release. Here, x is the distance along the wind, y is the distance along
the horizontal crosswind direction, and z is the distance along the vertical
axis. Note that the release location is the origin for x, y and z directions. In
the above equation σy and σz are the standard deviation in the horizontal
crosswind and vertical directions, respectively. These two parameters are also
known as the Gaussian plume dispersion parameters, and they are defined em-
pirically for different stability conditions. For Pasquill C type stability, Briggs
formulas for urban conditions parameterize the standard deviations as follows
(Panofsky and Dutton, 1984):

σy = 0.22 · x · (1 + 0.0004 · x)−0.5, σz = 0.20 · x. (10)

Several problem-specific formulas have been proposed for σy and σz . Results
typically benefit from adjusting these empirical parameters for different prob-
lems. In the present study, the empirical constants 0.22 and 0.20 in Eq. (10)
are replaced with stochastic parameters ζ1 and ζ2, respectively. The following
is written for the turbulent diffusion parameterizations

σy = ζ1 · x · (1 + 0.0004 · x)−0.5, σz = ζ2 · x. (11)

As shown in the next section, the event reconstruction results are significantly
improved by adopting this approach. It is emphasized that the above concept
is not specific to the Gaussian plume model, but it can be applied to the
empirical parameters of other dispersion models.

The probability model is completed by specifying prior distributions for the
model parameters m = (x, y, Q, H, θ, U, ζ1, ζ2, σ

2). In Eq. (3), p(m) repre-
sents prior knowledge or ignorance about the model parameters (m) before
observing the data d. Within the Bayesian framework, this can be expressed
by specifying prior distributions that place bounds on the model parameters,
based on known physical properties or expert opinion. For instance, data re-
garding the probability of certain wind directions and magnitudes acting on
a city might be available from previous meteorological studies.

For the error variance σ2, which represents measurement and model errors in
a cumulative fashion with a lognormal distribution, an inverse gamma prior
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distribution is assumed (Carlin and Louis, 1996),

p(σ2|α, β) =
1

Γ(α)βα
(σ2)−(α+1) exp(−1/(βσ2)). (12)

The hyperparameters α=1.0 and β=1000.0 specify a vague yet proper prior
distribution.

For the model parameters x, y, U, H, θ, ζ1, ζ2, proper uniform priors are as-
signed. In each case, the parameters are constrained to lie in a domain which
is bounded by practical values (Sivia, 1996). The emission rate, Q, is associ-
ated with the magnitude of the dispersion event. Hence, a Jeffrey’s prior is
preferred (Sivia, 1996), and the following can be written

p(Q) = II [Q > Qmin] /Q, (13)

where Qmin is a practical lower limit for the emission rate. It should be noted
that specifying a prior distribution is subjective, and different prior distribu-
tions can be suggested.

Given the the prior distributions for m and the likelihood function as shown
in Eq. 8, the posterior distribution for m given the data can be written as

p(m|d) ∝ {
N
∏

i=1

L(di|m)} × p(m), (14)

where N is the total number of sensors in the network, and i is the sensor
identification number. It is understood that

p(m) = p(x)p(y)p(Q)p(H)p(U)p(θ)p(ζ1)p(ζ2)p(σ2). (15)

Note that, conditional on the model m, it is assumed that observations are
independent, and that a priori, the model parameters that comprise m are
also independent.

Various algorithms exist for MCMC sampling. In the present study, the Metropo-
lis algorithm is adopted to simulate samples from the posterior distributions
(Metropolis et al., 1953). The reader is referred to Gilks et al. (1996) and
Carlin and Louis (1996) for a detailed explanation of the algorithm. In the
Metropolis algorithm, a candidate state m∗ is sampled from a Gaussian dis-
tribution centered on the previous state m, and the candidate state is accepted
with probability

ρ(m,m∗) = min





π(m∗)

π(m)
, 1



. (16)

where the target distribution is defined as

π(m) = L(d|m) · p(m). (17)
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Fig. 1. Traces of four independent Markov chains. The true value of the SF6 release
location is also marked. Square markers denote sampler/sensor locations colored
with measured concentration levels in ng/m3. Logarithmic (base 10) values are
shown. Clear circular markers indicate sensors measuring zero concentration.

Note that the proposals (m∗) are made sequentially for each model parameter
in the practical implementation.

3 Results

Environmental sensor networks have been deployed in various cities, and
specifics of these networks and actual data from the sensor network are not
publicly available. Hence, direct testing of event reconstruction methods against
such data are not feasible. Tracer field experiments designed for atmospheric
dispersion and air pollution studies can be used to evaluate the performance
of event reconstruction models (Bradley et al., 2005). Similarly, for problems
where the conditions are highly variable and field experiments are not feasible,
synthetic data can be produced by adding random error to forward simulation
results. Both approaches are pursued to validate the present event reconstruc-
tion model.

3.1 Event Reconstruction of Copenhagen Tracer Experiments

A series of tracer experiments were performed in the Copenhagen area in 1978
and 1979. Concentrations of tracer sulphurhexafluoride (SF6) and meteorolog-
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Fig. 2. Convergence of model parameters x, y, Q and σ with MCMC iterations.

ical conditions were measured and reported in Erik and Lyck (2002). For all
the experiments, the SF6 tracer was released from a tower with a height of
115 m. Samplers/sensors were placed 2 − 3 m above the ground level along
three crosswind arcs that were positioned 2 − 6 km away from the tracer re-
lease point. The total sampling time for the concentration measurements was
one hour. In the tracer data corresponding to the experiment performed on
October 19, the detection limit was given as 9 ng/m3, and any value below
this limit was indicated as zero. This value is used to set the sensor threshold
value Cth in Eq. (6) of the stochastic event reconstruction method. Out of the
forty samplers, eight of them register zero concentration values, as indicated
in Fig. 1 with clear markers. In the present study, the tracer dispersion exper-
iment is reconstructed for nine model parameters (x, y, H, Q, θ, U, ζ1, ζ2, σ

2).
Fig. 1 shows traces of Markov chains starting from four different locations.
The samplers are are colored with one hour averaged concentration measure-
ments reported in (Erik and Lyck, 2002). Fig. 1 shows that, after an initial
“burn-in” period, the MCMC chains generate samples from the vicinity of the
true source location independent of their starting points.

To assess the present event reconstruction method, a single simulation with
a long Markov chain was performed. The simulation with 2 × 105 MCMC
iterations took 143 s to finish on a laptop with Intel Core2 Duo (T7200)
2.0 GHz processor. The code used only a single processor core during the
simulation. Fig. 2 shows the convergence plots of model parameters x, y, Q
and σ. The first 20% of the chain is discarded as the burn-in period, and the
remaining samples are used in analyzing the posterior distributions. Similar
convergence behavior is also observed for the remaining model parameters.
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Fig. 4. Marginal probability distribution of stochastic turbulent diffusion parameters
given in Eq. (11). The vertical dashed lines highlight constant empirical values given
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The original Gaussian plume model is modified in this study by introducing
stochastic parameters in the empirical turbulent diffusion parameterizations
(e.g. Eq. (11)). As shown in Fig. 3, event reconstruction of the release location
is substantially improved when turbulent diffusion parameters are estimated
stochastically as opposed to empirically defining them in Eq. (10), which re-
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Fig. 5. Bivariate posterior distributions of event reconstruction parameters. The
diagonal plots present marginal distributions. The white marker represents true
values from the field experiment of Erik and Lyck (2002). The outer and inner
contour lines envelopes 90% and 50% of the samples, respectively.

sulted in posterior draws concentrated in an area that is roughly 1000 m away
from the true source location.

Fig. 4 shows the posterior distributions of the stochastic parameters given in
Eq. (11). The constant parameters given in Eq. (10) are also indicated on this
plot. The posterior distribution of the stochastic term ζ1 suggest values that
are markedly different than the value given in Briggs formulas. It is also ob-
served that the results are more sensitive to σy formulation, as the posterior
distribution indicates a narrow band for the stochastic parameter ζ1, and the
empirical value suggested in the Briggs formula does not lie within the high
posterior probability region of ζ1. An obvious advantage of the present ap-
proach is that posterior distributions of the forward model parameters can be
used in post-event forward projection calculations to get improved estimates
of contamination extent.

In typical emergency response operations, one of the primary goals is to find
the location of the release. Probabilistic answers instead of deterministic an-
swers are naturally preferred by decision makers due to many uncertainties
involved in CB agent dispersion events. To address this need, posterior distri-
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Fig. 6. Probabilistic plume envelope for 95% confidence level. Concentration unit is
ng/m3 and logarithmic values are plotted. Clear circular markers indicate sensors
measuring zero concentration.

butions need to be mapped in terms of probabilities. Because several param-
eters can be inferred in event reconstruction problems, a careful check using
bivariate analysis is needed. For that purpose, the results are summarized on a
so-called trellis plot as shown in Fig. 5. The plots on the diagonal are marginal
probability distributions of the forward model parameters. The off diagonal
plots are joint posterior distributions of the forward model parameters. The
outer and inner contour lines enveloping 90% and 50% of the samples are also
overlaid on the joint posterior distributions. The results from the field exper-
iment are highlighted with white colored markers on each subplot, which are
successfully captured within high posterior probability regions.

In atmospheric dispersion events, it is important that emergency responders
are provided with results that can address the uncertainty involved in the
problem. Bayesian inference approach was shown to be convenient for that
purpose (Chow et al., 2006). Fig. 6 presents a probabilistic plume envelope
with a confidence level of 95%. The plume envelope is generated by running
a forward model for each posterior sample and storing the concentrations on
a vector at desired locations. Then, the concentration value corresponding to
the 95th percentile in the data is selected as the probabilistic plume envelope.
As can be seen from Fig. 6, the plume envelopes all the samplers/sensors.
Hence, in analyzing this plot, one can have 95% confidence in assuming that
actual concentration could be any value that is below the value read from
the probabilistic plume envelope. Fig. 7 provides a check of this assumption.
Concentration data from the probabilistic plume envelope is compared against
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Fig. 7. Scatter plot comparison of concentration values obtained from the proba-
bilistic plume envelope with 95% confidence level vs. concentrations measured at
each sensor.

the actual concentration measurements from the samplers on a scatter plot.
As expected, 95% of the data are over predicted by the simulation; this results
in more conservative (safer) decisions in case of harmful dispersion events.

3.2 Event Reconstruction of a Synthetic Dispersion Experiment with Spa-

tially Varying Winds

Meteorological conditions over an urban area can be highly variable with winds
and stability conditions changing throughout the day. Hence, event reconstruc-
tion models should also have capabilities to address dispersion events under
such conditions. Various physical models exist to model spatially varying winds
and contaminant dispersion. These models can range from simple fast-running
empirical models to high-fidelity CFD-based models that demands large re-
sources for computation. In the present study, a fast-running segmented Gaus-
sian plume dispersion model is adopted, in which the overall plume is divided
into segment. Each segment is then calculated using the straight-line Gaussian
plume model driven by the local wind conditions. For a detailed explanation of
the segmented Gaussian plume, the reader is referred to Burger and Mulhol-
land (1988). It should be emphasized that Gaussian plume models have been
developed under certain assumptions (Panofsky and Dutton, 1984), They may
not perform well for complex urban dispersion problems, in which the original
modeling assumptions are not satisfied. In such cases, advanced high-fidelity
dispersion models may perform better than the Gaussian plume models.
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Fig. 8. Approximate wind fields generated from scattered wind measurements, using
the Barnes objective analysis scheme (Koch et al., 1983). Each vector plot represent
synthetic mean wind fields at different times in the day. Synthetic plume dispersion is
driven by the third wind field. Circular markers indicate sensors with zero synthetic
concentration readings. Non-zero synthetic concentration readings are represented
with square markers

Wind field information over an area of interest can be available in terms of
wind measurements from scattered locations at different times of the day.
Various data assimilation techniques have been developed to extend wind field
measurements onto a regular grid. In the present study, the practical Barnes
Objective analysis scheme (Koch et al., 1983) is used to extrapolate wind
fields on a two-dimensional gridded domain, which is then used to drive the
segmented Gaussian plume model for dispersion calculations. It should be
noted that the accuracy of the wind interpolation approach is not critical for
the present problem because data are treated as synthetic truth. However,
advanced data assimilation and high fidelity numerical weather prediction
models can be employed in actual operations.

Fig. 8 show three wind fields obtained by interpolating time-averaged wind
field measurements at scattered locations. Each interpolated wind field is as-
sumed to be representative of conditions during a certain time interval. Mea-
surements are assumed to have been made at equally spaced time intervals.
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Fig. 9. Bivariate posterior distributions of event reconstruction parameters. The
diagonal plots present marginal distributions. The white marker represents true
values from the synthetic experiment. The outer and inner contour lines envelope
90% and 50% of the samples, respectively.

To set up the synthetic dispersion event problem, the segmented plume model
was run on the third wind field as shown in Fig. 8. Gaussian noise with zero
mean and a standard deviation that is 10% of the synthetic sensor’s assumed
limit of detection is added to the logarithm of model concentrations to mimic
actual sensor observations with a lognormal error distribution. The x and y
coordinates of the release location, the emission rate Q and the wind field
identification number θ (e.g. θ = 1, 2, 3) and error variance σ2 are estimated
in the synthetic event reconstruction problem.

Fig. 9 shows a bivariate analysis of the event reconstruction results. As can be
seen from this figure, the true values from the synthetic experiment lie within
the contour line that envelopes 50% of the samples. In analyzing the posterior
distributions for the wind field identification number θ, one can notice that the
third wind field has the highest posterior probability. This is not surprising
because slight variations in the wind field can lead to drastic changes in the
dispersion patterns and poor agreements with the observed concentrations.

As described in the Bayesian formulation section, the present study adopts a
likelihood function to takes into account zero concentration sensor readings.
Fig. 10 demonstrates the benefits of the present approach. As can be seen from
this figure, the simulation that discarded the zero sensor readings points to a
most probable source location that is roughly 20 km away from the synthetic
true answer. However, when the zero sensor readings are taken into account,
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Fig. 10. The impact of zero sensor treatment on the event reconstruction results.
The plot on the left shows a simulation in which zero sensor readings are discarded.
The plot on the right shows a simulation that retains zero sensor readings using Eq.
(8). The mesh is color-coded by probability.

the synthetic true answer lies within a region of high posterior probability.
This shows the importance of retaining the zero sensors and modeling them
within the Bayesian framework.

4 Conclusion

A stochastic event reconstruction method for atmospheric contaminant dis-
persion has been presented. The method is based on Bayesian inference with
MCMC sampling. Special attention was given to the formulation of the like-
lihood function to take into account both zero and non-zero concentration
measurements that can be available from a sensor network. Additionally, pa-
rameters in the likelihood function are treated as random, and they are esti-
mated by using both data and prior probabilities to avoid arbitrary tuning in
the overall method. Fast-running Gaussian plume dispersion models have been
adopted as the forward model in the Bayesian framework. The Gaussian plume
model has been uniquely enhanced by reformulating its empirical turbulent
diffusion parameterizations with stochastic parameters that are estimated in
the Bayesian inference framework.

The event reconstruction method has been successfully validated against real
and synthetic dispersion experiments. In particular, the modeling of zero sen-
sors and the stochastic estimation of turbulent diffusion parameters have sub-
stantially improved the results. In practice, release location and emission rates
are of great importance to the emergency responders. The present study has
shown that the event reconstruction problem can be posed with several param-
eters. In the event reconstruction of the Copenhagen tracer experiment, up to
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nine parameters were estimated. Posterior probability distributions of model
parameters were also used to generate probabilistic plume envelopes with spec-
ified confidence levels that can be useful in constructing hazard zones to aid
emergency decision makers.

Although the Bayesian inference framework is general, a comprehensive op-
erational event reconstruction tool needs to address various release scenarios.
The present study focused on steady-point source releases. However, possible
contaminant release scenarios may include line, area or moving sources. Fur-
thermore, the scale of the event may range from neighborhood scale to urban
scale, requiring different dispersion models at each scale. A Gaussian plume
model may not be suitable at the neighborhood scale, where the impact of
individual buildings on dispersion patterns are significant. In such cases, ad-
vanced dispersion models should be considered. Future work will concentrate
on adding new dispersion capabilities to the present stochastic event recon-
struction tool (SERT) to address these various release scenarios.
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