207 research outputs found
Symmetric mixed states of qubits: local unitary stabilizers and entanglement classes
We classify, up to local unitary equivalence, local unitary stabilizer Lie
algebras for symmetric mixed states into six classes. These include the
stabilizer types of the Werner states, the GHZ state and its generalizations,
and Dicke states. For all but the zero algebra, we classify entanglement types
(local unitary equivalence classes) of symmetric mixed states that have those
stabilizers. We make use of the identification of symmetric density matrices
with polynomials in three variables with real coefficients and apply the
representation theory of SO(3) on this space of polynomials.Comment: 10 pages, 1 table, title change and minor clarifications for
published versio
Nonnegatively curved homogeneous metrics obtained by scaling fibers of submersions
We consider invariant Riemannian metrics on compact homogeneous spaces G/H
where an intermediate subgroup K between G and H exists, so that the
homogeneous space G/H is the total space of a Riemannian submersion. We study
the question as to whether enlarging the fibers of the submersion by a constant
scaling factor retains the nonnegative curvature in the case that the
deformation starts at a normal homogeneous metric. We classify triples of
groups (H,K,G) where nonnegative curvature is maintained for small
deformations, using a criterion proved by Schwachh\"ofer and Tapp. We obtain a
complete classification in case the subgroup H has full rank and an almost
complete classification in the case of regular subgroups.Comment: 23 pages; minor revisions, to appear in Geometriae Dedicat
The Semiclassical Limit for and Gauge Theory on the Torus
We prove that for and quantum gauge theory on a torus,
holonomy expectation values with respect to the Yang-Mills measure d\mu_T(\o)
=N_T^{-1}e^{-S_{YM}(\o)/T}[{\cal D}\o] converge, as , to
integrals with respect to a symplectic volume measure on the moduli
space of flat connections on the bundle. These moduli spaces and the symplectic
structures are described explicitly.Comment: 18 page
Localized Exotic Smoothness
Gompf's end-sum techniques are used to establish the existence of an infinity
of non-diffeomorphic manifolds, all having the same trivial
topology, but for which the exotic differentiable structure is confined to a
region which is spatially limited. Thus, the smoothness is standard outside of
a region which is topologically (but not smoothly) ,
where is the compact three ball. The exterior of this region is
diffeomorphic to standard . In a
space-time diagram, the confined exoticness sweeps out a world tube which, it
is conjectured, might act as a source for certain non-standard solutions to the
Einstein equations. It is shown that smooth Lorentz signature metrics can be
globally continued from ones given on appropriately defined regions, including
the exterior (standard) region. Similar constructs are provided for the
topology, of the Kruskal form of the Schwarzschild
solution. This leads to conjectures on the existence of Einstein metrics which
are externally identical to standard black hole ones, but none of which can be
globally diffeomorphic to such standard objects. Certain aspects of the Cauchy
problem are also discussed in terms of \models which are
``half-standard'', say for all but for which cannot be globally
smooth.Comment: 8 pages plus 6 figures, available on request, IASSNS-HEP-94/2
Infinitesimals without Logic
We introduce the ring of Fermat reals, an extension of the real field
containing nilpotent infinitesimals. The construction takes inspiration from
Smooth Infinitesimal Analysis (SIA), but provides a powerful theory of actual
infinitesimals without any need of a background in mathematical logic. In
particular, on the contrary with respect to SIA, which admits models only in
intuitionistic logic, the theory of Fermat reals is consistent with classical
logic. We face the problem to decide if the product of powers of nilpotent
infinitesimals is zero or not, the identity principle for polynomials, the
definition and properties of the total order relation. The construction is
highly constructive, and every Fermat real admits a clear and order preserving
geometrical representation. Using nilpotent infinitesimals, every smooth
functions becomes a polynomial because in Taylor's formulas the rest is now
zero. Finally, we present several applications to informal classical
calculations used in Physics: now all these calculations become rigorous and,
at the same time, formally equal to the informal ones. In particular, an
interesting rigorous deduction of the wave equation is given, that clarifies
how to formalize the approximations tied with Hook's law using this language of
nilpotent infinitesimals.Comment: The first part of the preprint is taken directly form arXiv:0907.1872
The second part is new and contains a list of example
The Bloch-Okounkov correlation functions of classical type
Bloch and Okounkov introduced an n-point correlation function on the infinite
wedge space and found an elegant closed formula in terms of theta functions.
This function has connections to Gromov-Witten theory, Hilbert schemes,
symmetric groups, etc, and it can also be interpreted as correlation functions
on integrable gl_\infty-modules of level one. Such gl_\infty-correlation
functions at higher levels were then calculated by Cheng and Wang. In this
paper, generalizing the type A results, we formulate and determine the n-point
correlation functions in the sense of Bloch-Okounkov on integrable modules over
classical Lie subalgebras of gl_\infty of type B,C,D at arbitrary levels. As
byproducts, we obtain new q-dimension formulas for integrable modules of type
B,C,D and some fermionic type q-identities.Comment: v2, very minor changes, Latex, 41 pages, to appear in Commun. Math.
Phy
Entanglement classes of symmetric Werner states
The symmetric Werner states for qubits, important in the study of quantum
nonlocality and useful for applications in quantum information, have a
surprisingly simple and elegant structure in terms of tensor products of Pauli
matrices. Further, each of these states forms a unique local unitary
equivalence class, that is, no two of these states are interconvertible by
local unitary operations.Comment: 4 pages, 1 table, additional references in version 2, revised
abstract and introduction in version 3, small clarifications for published
version in version
Probabilistic theories with purification
We investigate general probabilistic theories in which every mixed state has
a purification, unique up to reversible channels on the purifying system. We
show that the purification principle is equivalent to the existence of a
reversible realization of every physical process, namely that every physical
process can be regarded as arising from a reversible interaction of the system
with an environment, which is eventually discarded. From the purification
principle we also construct an isomorphism between transformations and
bipartite states that possesses all structural properties of the
Choi-Jamiolkowski isomorphism in quantum mechanics. Such an isomorphism allows
one to prove most of the basic features of quantum mechanics, like e.g.
existence of pure bipartite states giving perfect correlations in independent
experiments, no information without disturbance, no joint discrimination of all
pure states, no cloning, teleportation, no programming, no bit commitment,
complementarity between correctable channels and deletion channels,
characterization of entanglement-breaking channels as measure-and-prepare
channels, and others, without resorting to the mathematical framework of
Hilbert spaces.Comment: Differing from the journal version, this version includes a table of
contents and makes extensive use of boldface type to highlight the contents
of the main theorems. It includes a self-contained introduction to the
framework of general probabilistic theories and a discussion about the role
of causality and local discriminabilit
- …