207 research outputs found

    Symmetric mixed states of nn qubits: local unitary stabilizers and entanglement classes

    Full text link
    We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states into six classes. These include the stabilizer types of the Werner states, the GHZ state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.Comment: 10 pages, 1 table, title change and minor clarifications for published versio

    Nonnegatively curved homogeneous metrics obtained by scaling fibers of submersions

    Full text link
    We consider invariant Riemannian metrics on compact homogeneous spaces G/H where an intermediate subgroup K between G and H exists, so that the homogeneous space G/H is the total space of a Riemannian submersion. We study the question as to whether enlarging the fibers of the submersion by a constant scaling factor retains the nonnegative curvature in the case that the deformation starts at a normal homogeneous metric. We classify triples of groups (H,K,G) where nonnegative curvature is maintained for small deformations, using a criterion proved by Schwachh\"ofer and Tapp. We obtain a complete classification in case the subgroup H has full rank and an almost complete classification in the case of regular subgroups.Comment: 23 pages; minor revisions, to appear in Geometriae Dedicat

    The Semiclassical Limit for SU(2)SU(2) and SO(3)SO(3) Gauge Theory on the Torus

    Full text link
    We prove that for SU(2)SU(2) and SO(3)SO(3) quantum gauge theory on a torus, holonomy expectation values with respect to the Yang-Mills measure d\mu_T(\o) =N_T^{-1}e^{-S_{YM}(\o)/T}[{\cal D}\o] converge, as T0T\downarrow 0, to integrals with respect to a symplectic volume measure μ0\mu_0 on the moduli space of flat connections on the bundle. These moduli spaces and the symplectic structures are described explicitly.Comment: 18 page

    Localized Exotic Smoothness

    Full text link
    Gompf's end-sum techniques are used to establish the existence of an infinity of non-diffeomorphic manifolds, all having the same trivial R4{\bf R^4} topology, but for which the exotic differentiable structure is confined to a region which is spatially limited. Thus, the smoothness is standard outside of a region which is topologically (but not smoothly) B3×R1{\bf B^3}\times {\bf R^1}, where B3{\bf B^3} is the compact three ball. The exterior of this region is diffeomorphic to standard R1×S2×R1{\bf R^1}\times {\bf S^2}\times{\bf R^1}. In a space-time diagram, the confined exoticness sweeps out a world tube which, it is conjectured, might act as a source for certain non-standard solutions to the Einstein equations. It is shown that smooth Lorentz signature metrics can be globally continued from ones given on appropriately defined regions, including the exterior (standard) region. Similar constructs are provided for the topology, S2×R2{\bf S^2}\times {\bf R^2} of the Kruskal form of the Schwarzschild solution. This leads to conjectures on the existence of Einstein metrics which are externally identical to standard black hole ones, but none of which can be globally diffeomorphic to such standard objects. Certain aspects of the Cauchy problem are also discussed in terms of RΘ4{\bf R^4_\Theta}\models which are ``half-standard'', say for all t<0,t<0, but for which tt cannot be globally smooth.Comment: 8 pages plus 6 figures, available on request, IASSNS-HEP-94/2

    Infinitesimals without Logic

    Full text link
    We introduce the ring of Fermat reals, an extension of the real field containing nilpotent infinitesimals. The construction takes inspiration from Smooth Infinitesimal Analysis (SIA), but provides a powerful theory of actual infinitesimals without any need of a background in mathematical logic. In particular, on the contrary with respect to SIA, which admits models only in intuitionistic logic, the theory of Fermat reals is consistent with classical logic. We face the problem to decide if the product of powers of nilpotent infinitesimals is zero or not, the identity principle for polynomials, the definition and properties of the total order relation. The construction is highly constructive, and every Fermat real admits a clear and order preserving geometrical representation. Using nilpotent infinitesimals, every smooth functions becomes a polynomial because in Taylor's formulas the rest is now zero. Finally, we present several applications to informal classical calculations used in Physics: now all these calculations become rigorous and, at the same time, formally equal to the informal ones. In particular, an interesting rigorous deduction of the wave equation is given, that clarifies how to formalize the approximations tied with Hook's law using this language of nilpotent infinitesimals.Comment: The first part of the preprint is taken directly form arXiv:0907.1872 The second part is new and contains a list of example

    The Bloch-Okounkov correlation functions of classical type

    Full text link
    Bloch and Okounkov introduced an n-point correlation function on the infinite wedge space and found an elegant closed formula in terms of theta functions. This function has connections to Gromov-Witten theory, Hilbert schemes, symmetric groups, etc, and it can also be interpreted as correlation functions on integrable gl_\infty-modules of level one. Such gl_\infty-correlation functions at higher levels were then calculated by Cheng and Wang. In this paper, generalizing the type A results, we formulate and determine the n-point correlation functions in the sense of Bloch-Okounkov on integrable modules over classical Lie subalgebras of gl_\infty of type B,C,D at arbitrary levels. As byproducts, we obtain new q-dimension formulas for integrable modules of type B,C,D and some fermionic type q-identities.Comment: v2, very minor changes, Latex, 41 pages, to appear in Commun. Math. Phy

    Entanglement classes of symmetric Werner states

    Full text link
    The symmetric Werner states for nn qubits, important in the study of quantum nonlocality and useful for applications in quantum information, have a surprisingly simple and elegant structure in terms of tensor products of Pauli matrices. Further, each of these states forms a unique local unitary equivalence class, that is, no two of these states are interconvertible by local unitary operations.Comment: 4 pages, 1 table, additional references in version 2, revised abstract and introduction in version 3, small clarifications for published version in version

    Probabilistic theories with purification

    Get PDF
    We investigate general probabilistic theories in which every mixed state has a purification, unique up to reversible channels on the purifying system. We show that the purification principle is equivalent to the existence of a reversible realization of every physical process, namely that every physical process can be regarded as arising from a reversible interaction of the system with an environment, which is eventually discarded. From the purification principle we also construct an isomorphism between transformations and bipartite states that possesses all structural properties of the Choi-Jamiolkowski isomorphism in quantum mechanics. Such an isomorphism allows one to prove most of the basic features of quantum mechanics, like e.g. existence of pure bipartite states giving perfect correlations in independent experiments, no information without disturbance, no joint discrimination of all pure states, no cloning, teleportation, no programming, no bit commitment, complementarity between correctable channels and deletion channels, characterization of entanglement-breaking channels as measure-and-prepare channels, and others, without resorting to the mathematical framework of Hilbert spaces.Comment: Differing from the journal version, this version includes a table of contents and makes extensive use of boldface type to highlight the contents of the main theorems. It includes a self-contained introduction to the framework of general probabilistic theories and a discussion about the role of causality and local discriminabilit
    corecore