163 research outputs found

    Spectrum of low-lying s3QQˉs^{3}Q\bar{Q} configurations with negative parity

    Full text link
    Spectrum of low-lying five-quark configurations with strangeness quantum number S=3S=-3 and negative parity is studied in three kinds of constituent quark models, namely the one gluon exchange, Goldstone Boson exchange, and instanton-induced hyperfine interaction models, respectively. Our numerical results show that the lowest energy states in all the three employed models are lying at \sim1800 MeV, about 200 MeV lower than predictions of various quenched three-quark models. In addition, it is very interesting that the state with the lowest energy in one gluon exchange model is with spin 3/2, but 1/2 in the other two models.Comment: Version published in Phys. Rev.

    P Wave Meson Spectrum in a Relativistic Model with Instanton Induced Interaction

    Full text link
    On the basis of the phenomenological relativistic harmonic models for quarks we have obtained the masses of P wave mesons. The full Hamiltonian used in the investigation has Lorentz scalar + vector confinement potential, along with one gluon exchange potential (OGEP) and the instanton-induced quark-antiquark interaction (III). A good agreement is obtained with the experimental masses. The respective role of III and OGEP for the determination of the meson masses is discussed.Comment: Corrected typo

    Dynamically generated open charmed baryons beyond the zero range approximation

    Get PDF
    The interaction of the low lying pseudo-scalar mesons with the ground state baryons in the charm sector is studied within a coupled channel approach using a t-channel vector-exchange driving force. The amplitudes describing the scattering of the pseudo-scalar mesons off the ground-state baryons are obtained by solving the Lippmann--Schwinger equation. We analyze in detail the effects of going beyond the t=0t=0 approximation. Our model predicts the dynamical generation of several open charmed baryon resonances in different isospin and strangeness channels, some of which can be clearly identified with recently observed states.Comment: 7 figures, 8 table

    A mass formula for light mesons from a potential model

    Full text link
    The quark dynamics inside light mesons, except pseudoscalar ones, can be quite well described by a spinless Salpeter equation supplemented by a Cornell interaction (possibly partly vector, partly scalar). A mass formula for these mesons can then be obtained by computing analytical approximations of the eigenvalues of the equation. We show that such a formula can be derived by combining the results of two methods: the dominantly orbital state description and the Bohr-Sommerfeld quantization approach. The predictions of the mass formula are compared with accurate solutions of the spinless Salpeter equation computed with a Lagrange-mesh calculation method.Comment: 5 figure

    Universality of Regge and vibrational trajectories in a semiclassical model

    Full text link
    The orbital and radial excitations of light-light mesons are studied in the framework of the dominantly orbital state description. The equation of motion is characterized by a relativistic kinematics supplemented by the usual funnel potential with a mixed scalar and vector confinement. The influence of finite quark masses and potential parameters on Regge and vibrational trajectories is discussed. The case of heavy-light mesons is also presented.Comment: 12 page

    Adverse health effects of nighttime lighting: comments on american medical association policy statement.

    Get PDF
    The American Medical Association House of Delegates in June of 2012 adopted a policy statement on nighttime lighting and human health. This major policy statement summarizes the scientific evidence that nighttime electric light can disrupt circadian rhythms in humans and documents the rapidly advancing understanding from basic science of how disruption of circadian rhythmicity affects aspects of physiology with direct links to human health, such as cell cycle regulation, DNA damage response, and metabolism. The human evidence is also accumulating, with the strongest epidemiologic support for a link of circadian disruption from light at night to breast cancer. There are practical implications of the basic and epidemiologic science in the form of advancing lighting technologies that better accommodate human circadian rhythmicity

    Bound q2qˉ2q^2\bar q^2 states in a constituent quark model

    Full text link
    We consider the existence of bound systems consisting of two quarks and two antiquarks (q2qˉ2q^2\bar q^2) within the framework of a constituent quark model. The underlying quark dynamics is described by a linear confinement potential and an effective q2qˉ2q^2\bar q^2 interaction which has its origin in instanton effects of QCD. We calculate the spectra and examine the internal structure of the states found.Comment: 11 pages, needs epsf.st

    Quasi-Two-Body Decays of Nonstrange Baryons

    Full text link
    We examine the decays of nonstrange baryons to the final states Δπ\Delta\pi, NρN\rho, NηN\eta, NηN\eta^\prime, NωN\omega, N1/2+(1440)πN1/2^+(1440)\pi, and Δ3/2+(1600)π\Delta3/2^+(1600)\pi, in a relativized pair-creation(3P0^3P_0) model which has been developed in a previous study of the NπN\pi decays of the same baryon states. As it is our goal to provide a guide for the possible discovery of new baryon states at CEBAF and elsewhere, we examine the decays of resonances which have already been seen in the partial-wave analyses, along with those of states which are predicted by the quark model but which remain undiscovered. The level of agreement between our calculation and the available widths from the partial-wave analyses is encouraging.Comment: 41 pages, CEBAF-TH-93-1

    Vector mesons in a relativistic point-form approach

    Full text link
    We apply the point form of relativistic quantum mechanics to develop a Poincare invariant coupled-channel formalism for two-particle systems interacting via one-particle exchange. This approach takes the exchange particle explicitly into account and leads to a generalized eigenvalue equation for the Bakamjian-Thomas type mass operator of the system. The coupling of the exchange particle is derived from quantum field theory. As an illustrative example we consider vector mesons within the chiral constituent quark model in which the hyperfine interaction between the confined quark-antiquark pair is generated by Goldstone-boson exchange. We study the effect of retardation in the Goldstone-boson exchange by comparing with the commonly used instantaneous approximation. As a nice physical feature we find that the problem of a too large ρ\rho-ω\omega splitting can nearly be avoided by taking the dynamics of the exchange meson explicitly into account.Comment: 14 pages, 1 figur

    Bohr-Sommerfeld quantization and meson spectroscopy

    Full text link
    We use the Bohr-Sommerfeld quantization approach in the context of constituent quark models. This method provides, for the Cornell potential, analytical formulae for the energy spectra which closely approximate numerical exact calculations performed with the Schrodinger or the spinless Salpeter equations. The Bohr-Sommerfeld quantization procedure can also be used to calculate other observables such as r.m.s. radius or wave function at the origin. Asymptotic dependence of these observables on quantum numbers are also obtained in the case of potentials which behave asymptotically as a power-law. We discuss the constraints imposed by these formulae on the dynamics of the quark-antiquark interaction.Comment: 13 page
    corecore