6,254 research outputs found
On Time-Space Noncommutativity for Transition Processes and Noncommutative Symmetries
We explore the consequences of time-space noncommutativity in the quantum
mechanics of atoms and molecules, focusing on the Moyal plane with just
time-space noncommutativity (,
\theta_{0i}\neqq 0, ). Space rotations and parity are not
automorphisms of this algebra and are not symmetries of quantum physics. Still,
when there are spectral degeneracies of a time-independent Hamiltonian on a
commutative space-time which are due to symmetries, they persist when
\theta_{0i}\neqq 0; they do not depend at all on . They give no
clue about rotation and parity violation when \theta_{0i}\neqq 0. The
persistence of degeneracies for \theta_{0i}\neqq 0 can be understood in terms
of invariance under deformed noncommutative ``rotations'' and ``parity''. They
are not spatial rotations and reflection. We explain such deformed symmetries.
We emphasize the significance of time-dependent perturbations (for example, due
to time-dependent electromagnetic fields) to observe noncommutativity. The
formalism for treating transition processes is illustrated by the example of
nonrelativistic hydrogen atom interacting with quantized electromagnetic field.
In the tree approximation, the transition for hydrogen is
zero in the commutative case. As an example, we show that it is zero in the
same approximation for . The importance of the deformed
rotational symmetry is commented upon further using the decay
as an example.Comment: 13 pages, revised version, references adde
Magnetic anomalies in single crystalline ErPd2Si2
Considering certain interesting features in the previously reported 166Er
Moessbauer effect and neutron diffraction data on the polycrystalline form of
ErPd2Si2 crystallizing in ThCr2Si2-type tetragonal structure, we have carried
out magnetic measurements (1.8 to 300 K) on the single crystalline form of this
compound. We observe significant anisotropy in the absolute values of
magnetization (indicating that the easy axis is c-axis) as well as in the
features due to magnetic ordering in the plot of magnetic susceptibility (chi)
versus temperature (T) at low temperatures. The chi(T) data reveal that there
is a pseudo-low dimensional magnetic order setting in at 4.8 K, with a
three-dimensional antiferromagnetic ordering setting in at a lower temperature
(3.8 K). A new finding in the chi(T) data is that, for H//, but not for
H//, there is a broad shoulder in the range 8-20 K, indicative of the
existence of magnetic correlations above 5 K as well, which could be related to
the previously reported slow-relaxation-dominated Moessbauer spectra.
Interestingly, the temperature coefficient of electrical resistivity is found
to be isotropic; no feature due to magnetic ordering could be detected in the
electrical resistivity data at low temperatures, which is attributed to
magnetic Brillioun-zone boundary gap effects. The results reveal complex nature
of the magnetism of this compound
Evaporation and Step Edge Diffusion in MBE
Using kinetic Monte-Carlo simulations of a Solid-on-Solid model we
investigate the influence of step edge diffusion (SED) and evaporation on
Molecular Beam Epitaxy (MBE). Based on these investigations we propose two
strategies to optimize MBE-growth. The strategies are applicable in different
growth regimes: during layer-by-layer growth one can reduce the desorption rate
using a pulsed flux. In three-dimensional (3D) growth the SED can help to grow
large, smooth structures. For this purpose the flux has to be reduced with time
according to a power law.Comment: 5 pages, 2 figures, latex2e (packages: elsevier,psfig,latexsym
On Coordinate Transformations in Planar Noncommutative Theories
We consider planar noncommutative theories such that the coordinates verify a
space-dependent commutation relation. We show that, in some special cases, new
coordinates may be introduced that have a constant commutator, and as a
consequence the construction of Field Theory models may be carried out by an
application of the standard Moyal approach in terms of the new coordinates. We
apply these ideas to the concrete example of a noncommutative plane with a
curved interface. We also show how to extend this method to more general
situations.Comment: 20 pages, 1 figure. references adde
Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study
Magnetic materials are usually divided into two classes: those with localised
magnetic moments, and those with itinerant charge carriers. We present a
comprehensive experimental (spectroscopic ellipsomerty) and theoretical study
to demonstrate that these two types of magnetism do not only coexist but
complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material
the itinerant charge carriers interact with large localised magnetic moments of
Tb(4f) states, forming complex magnetic lattices at low temperatures, which we
associate with self-organisation of magnetic clusters. The formation of
magnetic clusters results in low-energy optical spectral weight shifts, which
correspond to opening of the pseudogap in the conduction band of the itinerant
charge carriers and development of the low- and high-spin intersite electronic
transitions. This phenomenon, driven by self-trapping of electrons by magnetic
fluctuations, could be common in correlated metals, including besides
Kondo-lattice metals, Fe-based and cuprate superconductors.Comment: 30 pages, 6 Figure
NC Wilson lines and the inverse Seiberg-Witten map for nondegenerate star products
Open Wilson lines are known to be the observables of noncommutative gauge
theory with Moyal-Weyl star product. We generalize these objects to more
general star products. As an application we derive a formula for the inverse
Seiberg-Witten map for star products with invertible Poisson structures.Comment: 8 page
- …