1,139 research outputs found
Half-life Limit of 19Mg
A search for 19Mg was performed using projectile fragmentation of a 150
MeV/nucleon 36Ar beam. No events of 19Mg were observed. From the time-of-flight
through the fragment separator an upper limit of 22 ns for the half-life of
19Mg was established
Whole-body somatotopic maps in the cerebellum revealed with 7T fMRI
The cerebellum is known to contain a double somatotopic body representation. While the anterior lobe body map has shown a robust somatotopic organization in previous fMRI studies, the representations in the posterior lobe have been more difficult to observe and are less precisely characterized. In this study, participants went through a simple motor task asking them to move either the eyes (left-right guided saccades), tongue (left-right movement), thumbs, little fingers or toes (flexion). Using high spatial resolution fMRI data acquired at ultra-high field (7T), with special care taken to obtain sufficient B1 over the entire cerebellum and a cerebellar surface reconstruction facilitating visual inspection of the results, we were able to precisely map the somatotopic representations of these five distal body parts on both subject- and group-specific cerebellar surfaces. The anterior lobe (including lobule VI) showed a consistent and robust somatotopic gradient. Although less robust, the presence of such a gradient in the posterior lobe, from Crus II to lobule VIIIb, was also observed. Additionally, the eyes were also strongly represented in Crus I and the oculomotor vermis. Overall, crosstalk between the different body part representations was negligible. Taken together, these results show that multiple representations of distal body parts are present in the cerebellum, across many lobules, and they are organized in an orderly manner
fMRI protocol optimization for simultaneously studying small subcortical and cortical areas at 7 ​T
Most fundamental cognitive processes rely on brain networks that include both cortical and subcortical structures. Studying such networks using functional magnetic resonance imaging (fMRI) requires a data acquisition protocol that provides blood-oxygenation-level dependent (BOLD) sensitivity across the entire brain. However, when using standard single echo, echo planar imaging protocols, researchers face a tradeoff between BOLD-sensitivity in cortex and in subcortical areas. Multi echo protocols avoid this tradeoff and can be used to optimize BOLD-sensitivity across the entire brain, at the cost of an increased repetition time. Here, we empirically compare the BOLD-sensitivity of a single echo protocol to a multi echo protocol. Both protocols were designed to meet the specific requirements for studying small, iron rich subcortical structures (including a relatively high spatial resolution and short echo times), while retaining coverage and BOLD-sensitivity in cortical areas. The results indicate that both sequences lead to similar BOLD-sensitivity across the brain at 7 ​T
Evidence for variation in the effective population size of animal mitochondrial DNA
Background: It has recently been shown that levels of diversity in mitochondrial DNA are remarkably constant across animals of diverse census population sizes and ecologies, which has led to the suggestion that the effective population of mitochondrial DNA may be relatively constant. Results: Here we present several lines of evidence that suggest, to the contrary, that the effective population size of mtDNA does vary, and that the variation can be substantial. First, we show that levels of mitochondrial and nuclear diversity are correlated within all groups of animals we surveyed. Second, we show that the effectiveness of selection on non-synonymous mutations, as measured by the ratio of the numbers of non-synonymous and synonymous polymorphisms, is negatively correlated to levels of mitochondrial diversity. Finally, we estimate the effective population size of mitochondrial DNA in selected mammalian groups and show that it varies by at least an order of magnitude. Conclusions: We conclude that there is variation in the effective population size of mitochondria. Furthermore we suggest that the relative constancy of DNA diversity may be due to a negative correlation between the effective population size and the mutation rate per generation
Is the structure of 42Si understood?
A more detailed test of the implementation of nuclear forces that drive shell
evolution in the pivotal nucleus \nuc{42}{Si} -- going beyond earlier
comparisons of excited-state energies -- is important. The two leading
shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which
reproduce the low-lying \nuc{42}{Si}() energy, but whose predictions for
other observables differ significantly, are interrogated by the population of
states in neutron-rich \nuc{42}{Si} with a one-proton removal reaction from
\nuc{43}{P} projectiles at 81~MeV/nucleon. The measured cross sections to the
individual \nuc{42}{Si} final states are compared to calculations that combine
eikonal reaction dynamics with these shell-model nuclear structure overlaps.
The differences in the two shell-model descriptions are examined and linked to
predicted low-lying excited states and shape coexistence. Based on the
present data, which are in better agreement with the SDPF-MU calculations, the
state observed at 2150(13)~keV in \nuc{42}{Si} is proposed to be the ()
level.Comment: accepted in Physical Review Letter
- …