535 research outputs found
Enhanced Shot Noise in Tunneling through a Stack of Coupled Quantum Dots
We have investigated the noise properties of the tunneling current through
vertically coupled self-assembled InAs quantum dots. We observe
super-Poissonian shot noise at low temperatures. For increased temperature this
effect is suppressed. The super-Poissonian noise is explained by capacitive
coupling between different stacks of quantum dots
Macroeconomic Modeling of Tax Policy: A Comparison of Current Methodologies
The macroeconomic effects of tax reform are a subject of significant discussion and controversy. In 2015, the House of Representatives adopted a new “dynamic scoring” rule requiring a point estimate within the budget window of the deficit effect due to the macroeconomic response to certain proposed tax legislation. The revenue estimates provided by the staff of the Joint Committee on Taxation (JCT) for major tax bills often play a critical role in Congressional deliberations and public discussion of those bills. The JCT has long had macroeconomic analytic capability, and in recent years, responding to Congress’ interest in macrodynamic estimates for purposes of scoring legislation, outside think tank groups — notably the Tax Policy Center and the Tax Foundation — have also developed macrodynamic estimation models. The May 2017 National Tax Association (NTA) Spring Symposium brought together the JCT with the Tax Foundation and the Tax Policy Center for a panel discussion regarding their respective macrodynamic estimating approaches. This paper reports on that discussion. Below each organization provides a general description of their macrodynamic modeling methodology and answers five questions posed by the convening authors
MyD88- and TRIF-Independent Induction of Type I Interferon Drives Naive B Cell Accumulation but Not Loss of Lymph Node Architecture in Lyme Disease
Rapidly after infection, live Borrelia burgdorferi, the causative agent of Lyme disease, is found within lymph nodes, causing rapid and strong tissue enlargement, a loss of demarcation between B cell follicles and T cell zones, and an unusually large accumulation of B cells. We sought to explore the mechanisms underlying these changes, as lymph tissue disruption could be detrimental for the development of robust Borrelia-specific immunity. A time course study demonstrated that the loss of the normal lymph node structure was a distinct process that preceded the strong increases in B cells at the site. The selective increases in B cell frequencies were due not to proliferation but rather to cytokine-mediated repositioning of B cells to the lymph nodes, as shown with various gene-targeted and bone marrow irradiation chimeras. These studies demonstrated that B. burgdorferi infection induced type I interferon receptor (IFNR) signaling in lymph nodes in a MyD88- and TRIF-independent manner and that type I IFNR indirect signaling was required for the excessive increases of naive B cells at those sites. It did not, however, drive the observed histopathological changes, which occurred independently also from major shifts in the lymphocyte-homing chemokines, CXCL12, CXCL13, and CCL19/21, as shown by quantitative reverse transcription-PCR (qRT-PCR), flow cytometry, and transwell migration experiments. Thus, B. burgdorferi infection drives the production of type I IFN in lymph nodes and in so doing strongly alters the cellular composition of the lymph nodes, with potential detrimental effects for the development of robust Borrelia-specific immunity
Infection of Mice with the Agent of Human Granulocytic Ehrlichiosis after Different Routes of Inoculation
Population kinetics of the agent of human granulocytic ehrlichiosis (aoHGE) were examined after needle and tickborne inoculation of C3H mice. Blood, skin, lung, spleen, liver, kidney, brain, lymph node, and bone marrow samples were analyzed by using real-time polymerase chain reaction (PCR) at various intervals after inoculation, using a p44 gene target. The highest number of copies of the p44 gene target occurred in blood and bone marrow samples, emphasizing aoHGE leukocytotropism. Numbers of copies of the p44 gene target in other tissues reflected vascular perfusion rather than replication. Needle-inoculated infected mice had earlier dissemination, but kinetics of infection in both groups were parallel, with declining rates of infection by day 20 and recovery in some mice on days 20-60 after inoculation. On the basis of an aoHGE lysate ELISA, mice seroconverted by day 10 after inoculation. Therefore, real-time PCR is useful for quantitative studies with the aoHGE in experimental infections, and results showed that needle inoculation can be used to study the aoHGE infection because of its similarity to tickborne inoculatio
Lymphoadenopathy during Lyme Borreliosis Is Caused by Spirochete Migration-Induced Specific B Cell Activation
Lymphadenopathy is a hallmark of acute infection with Borrelia burgdorferi, a tick-borne spirochete and causative agent of Lyme borreliosis, but the underlying causes and the functional consequences of this lymph node enlargement have not been revealed. The present study demonstrates that extracellular, live spirochetes accumulate in the cortical areas of lymph nodes following infection of mice with either host-adapted, or tick-borne B. burgdorferi and that they, but not inactivated spirochetes, drive the lymphadenopathy. The ensuing lymph node response is characterized by strong, rapid extrafollicular B cell proliferation and differentiation to plasma cells, as assessed by immunohistochemistry, flow cytometry and ELISPOT analysis, while germinal center reactions were not consistently observed. The extrafollicular nature of this B cell response and its strongly IgM-skewed isotype profile bear the hallmarks of a T-independent response. The induced B cell response does appear, however, to be largely antigen-specific. Use of a cocktail of recombinant, in vivo-expressed B. burgdorferi-antigens revealed the robust induction of borrelia-specific antibody-secreting cells by ELISPOT. Furthermore, nearly a quarter of hybridomas generated from regional lymph nodes during acute infection showed reactivity against a small number of recombinant Borrelia-antigens. Finally, neither the quality nor the magnitude of the B cell responses was altered in mice lacking the Toll-like receptor adaptor molecule MyD88. Together, these findings suggest a novel evasion strategy for B. burgdorferi: subversion of the quality of a strongly induced, potentially protective borrelia-specific antibody response via B. burdorferi's accumulation in lymph nodes
The Early Dissemination Defect Attributed to Disruption of Decorin-Binding Proteins is Abolished in Chronic Murine Lyme Borreliosis
The laboratory mouse model of Lyme disease has revealed that Borrelia burgdorferi differentially expresses numerous outer surface proteins that influence different stages of infection (tick-borne transmission, tissue colonization, dissemination, persistence, and tick acquisition). Deletion of two such outer surface proteins, decorin-binding proteins A and B (DbpA/B), has been documented to decrease infectivity, impede early dissemination, and, possibly, prevent persistence. In this study, DbpA/B-deficient spirochetes were confirmed to exhibit an early dissemination defect in immunocompetent, but not immunodeficient, mice, and the defect was found to resolve with chronicity. Development of disease (arthritis and carditis) was attenuated only in the early stage of infection with DbpA/B-deficient spirochetes in both types of mice. Persistence of the DbpA/B-deficient spirochetes occurred in both immunocompetent and immunodeficient mice in a manner indistinguishable from that of wild-type spirochetes. Dissemination through the lymphatic system was evaluated as an underlying mechanism for the early dissemination defect. At 12 h, 3 days, 7 days, and 14 days postinoculation, DbpA/B-deficient spirochetes were significantly less prevalent and in lower numbers in lymph nodes than wild-type spirochetes. However, in immunodeficient mice, deficiency of DbpA/B did not significantly decrease the prevalence or spirochete numbers in lymph nodes. Complementation of DbpA/B restored a wild-type phenotype. Thus, the results indicated that deficiency of DbpA/B allows the acquired immune response to restrict early dissemination of spirochetes, which appears to be at least partially mediated through the lymphatic system
- …